二元一次方程组中的行程、工程问题.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二元一次方程组中的行程、工程问题.doc》由会员分享,可在线阅读,更多相关《二元一次方程组中的行程、工程问题.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二元一次方程组中的行程、工程问题1. 甲、乙二人在400米的跑道上练习跑步,如果同方向跑,他们每隔3分零20秒就相遇一次;如果相对而跑,他们每隔40秒相遇一次,求甲、乙二人的速度. 分析:同向跑相遇时,快者比慢者多跑一圈;相对跑相遇时,两人一共跑一圏。注意此题目没有说谁的速度快,因此要分两种情况回答问题。(3分零20秒200秒) 解:设甲、乙二人的速度分别为x米/秒,y米/秒。 依题意,得 分别解这两个方程组得: 答:甲、乙二人的速度分别为6米/秒和4米/秒或4米/秒和6米/秒。2. 某学校组织学生到100千米以外的某地夏令营去,汽车只能坐一半人,另一半人步行。先坐车的人在途中某处下车步行,汽
2、车则立即回去接先步行的一半人。已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发。 分析:我们从行程问题的3个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,由题意知,先坐车的一半人,后坐车的一半人,车三者所用时间相同,所以根据时间来列方程组。如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系。 解:设先坐车的一半人下车点距起点x千米,这个下车点与后坐车的一半人的上车点相距y千米,根据题意得 化简得 解得: 从起点到终点所用的时间为 出发时间为:17107.即早晨7点出发。 答:要使学生下午5点到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 中的 行程 工程 问题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内