均衡器(11页).doc
《均衡器(11页).doc》由会员分享,可在线阅读,更多相关《均衡器(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-均衡器-第 11 页高速串行设计均衡器 高速串行 处串行数字电路可以分为发送端(TX)、信道(CHANNEL)、接收端(RX)三部分,如下图一所示。眼图医生可以对串行数字链路中三个部分进行分析:1. 发送端的预加重/去加重分析:针对某一信道计算出最佳的预加重/去加重参数。2. 信道仿真:直接测试TX输出的波形,输入信道的S参数模型后,准确计算出RX端的波形。3. 接收端的均衡器设计:对于高于5Gbps的信号,通常在RX端测试时,眼图已闭合,眼图医生可以仿真均衡器,计算出均衡后的信号波形与眼图。图一:高速串行链路示意图什么是信道?在通信理论中通常用“信道”来描述连接TX与RX的物理媒质,在某些
2、SI(信号完整性)文献中,又称为互连。信道包括了我们常见的:印刷电路板(PCB)上的微带线、带状线、过孔、连接器、集成电路的封装、光纤、电缆等等。如下图二所示为背板的示意图。通常,信道有一个共同的特点:随着频率的升高,损耗越来越大;信道的物理传输距离越长,损耗越大。图二:背板的互连示意图接下来为某背板的测试案例。其TX为某Gbps的高速芯片,信道由两块线卡与背板组成,其PCB上传输线的有10英寸长、20英寸长、30英寸长、40英寸长四组,在接收端测量眼图(如图三所示),使用游标测量眼高(眼图的张开程度),分别为592mV、457mV、295mV、164mV。可见,随着PCB上传输线的长度的增加
3、,信道的损耗越来越大,RX端测量到的眼图的眼高越来越小。图三:不同背板走线长度的接收端眼图测试结果对比什么是信道仿真?信道仿真是用力科示波器测量TX发送的波形,然后在眼图医生中导入信道的S参数模型文件,计算出通过信道后RX端的信号波形、眼图与抖动。力科信道仿真的处理速度非常快、精度足够高。下图中TX为某信号,通过同轴电缆连接到示波器的两个通道,即示波器直接在TX端测量,然后使用某20GHz带宽的矢量网络分析仪(Vector Network Analyzer,简称VNA)测量两块走线长度不一样的DEMO板的S参数,在力科的眼图医生中调用S参数来仿真该信道。计算出RX端的波形与眼图,眼图如下图四所
4、示,左边是某厂商的20英寸长DEMO板接收端的眼图,右边为另一厂商的24英寸线长DEMO板计算出的RX的眼图。两者的眼高分别为168mV与108mV。使用信道仿真,无须连接TX、信道、RX后在RX端实测,只要拥有信道的S参数模型,示波器直接在TX端测量,就可以仿真出通过不同信道后RX端的波形、眼图与抖动。这样,就可以快速验证某高速SERDES芯片驱动不同长度传输线时接收端的性能,在高速背板的预研与设计中非常有用。图四:某信号的接收端眼图测试结果对比怎样得到信道的S参数文件?在信道仿真中,信道的S参数模型的精确性决定了RX端计算结果的精确性,所以获得足够精确的信道的S参数模型非常重要。在信号完整
5、性(简称SI)领域,通常有两种方法获取信道的S参数模型。1. 使用VNA或者TDR直接测量信道的S参数;2. 使用HFSS、SIwave、Sigrity等EDA建模软件提取信道的S参数;前者基于实际信道的测量,精度高,不过信道上的端口必需留有SMA射频头,VNA或TDR通过SMA接头的同轴电缆连接到待测试信道;后者通常基于连接器的三维结构、PCB的压板结构(stackup)、介质特性、传输线的几何特性,使用计算电磁学的一些算法提取出信道的S参数模型。图五:夹具去嵌前后眼图对比力科的信道仿真可以调入扩展名为*.sNp(N为端口数)的S参数文件,通常*.sNp文件称为touchstone文件,测试
6、仪器和EDA软件都可以输出这个格式的S参数文件。关于S参数的相关理论,可参考一些射频理论书籍。什么是夹具去嵌?在测量当前流行的很多串行信号(比如PCIe、SATA、SAS、FBDIMM)时,通常需要专门的测试夹具,夹具上把PCB的传输线转换为SMA射频连接头,待测试信号连接到夹具上,夹具通过同轴电缆连接到示波器,如下图五所示,示波器作为接收端进行测量。由于夹具上的连接器、金手指、过孔、微带线、带状线等会使信号发生衰减、色散或者反射,导致示波器测量到的信号有所恶化。使用夹具去嵌功能,只需输入夹具的S参数模型文件,即可计算出没有夹具时测量到的信号的波形与眼图。如图五所示,上半部分是信号去嵌前测量到
7、的眼图,下半部分是信号去嵌后测量到的眼图,相比前者,后者的上升下降沿更陡峭,眼轮廓清晰,眼张得更开。从这个比较图中可以看到力科的去嵌技术可以消除夹具的负面作用。信道仿真的常见问题问题1:力科的信道仿真与EDA软件仿真有什么区别?和力科的眼图医生一样,EDA软件同样可以做信道仿真、均衡器仿真。两种最主要的区别在于:1. 力科的信道仿真和均衡器仿真速度非常快,在几秒钟内就可以计算出几百微秒长的波形,几乎可以做到实时测量,实时计算出结果;而EDA软件的计算速度较慢,计算几百纳秒长的波形通常需要几十分钟。两种方法的速度有天壤之别。2. 力科的信道仿真基于实测,电路板上很多随机因素都考虑进去了,而EDA
8、软件仿真通常基于理想的工作状况,忽略了一些随机因素。问题2:信道仿真的精度?信道仿真的精度取决于信道的S参数模型是否足够精确。在下图为某IC厂商验证其SAS2芯片驱动背板的测试结果。其中一个波形是用力科示波器在TX端测试,用信道仿真计算出的RX端的波形,另一个波形是示波器直接在RX端测量到的波形,可见两者非常接近。信道的S参数由某20G带宽VNA测量得到。图六:某SAS信号在RX实测与TX测试后用信道仿真计算RX端信号波形的对比什么是预加重/去加重(Pre-emphasis/De-emphasis)?在图三中我们看到,对于信号,通过10、20、30、40英寸线长的背板后,接收端的眼图随着长度增
9、加会逐渐闭合。原因在于信道是一个低通滤波器,随着传输线长度的增加,损耗和色散会越来越大,另外,随着频率的增加,损耗与色散效应也越来越明显。而当前的数字电路速度不断提高,通常,在速率高于1GHz的数字电路中,为了把信号能传输更远的距离,通常在发送端使用预加重或去加重的均衡技术。在下图七中左半部分是预加重。预加重保持信号的低频部分不变,提升信号的高频部分;而去加重衰减信号的低频部分,保持高频部分。预加重/去加重的目的都是提升信号中高频部分的能量,以补偿信道对高频部分衰减过大。图七:预加重 VS 去加重如果在TX端测量经过预加重/去加重的信号的眼图,可以看到如下图八的上半部分所示的“双眼皮”的眼图,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 均衡器 11
限制150内