一元二次方程全章复习与巩固知识讲解.doc
《一元二次方程全章复习与巩固知识讲解.doc》由会员分享,可在线阅读,更多相关《一元二次方程全章复习与巩固知识讲解.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程全章复习与巩固知识讲解一元二次方程全章复习与巩固知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法【知识网络】 【要点梳理】要点一、一元二次方程的有关概念1. 一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程2. 一元二次方程的一般式: 3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其
2、是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:一个未知数;未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0要点二、一元二次方程的解法1基本思想 一元二次方程一元一次方程2基本解法 直接开平方法、配方法、公式法、因式分解法要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法 要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式 一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.(1)当0
3、时,一元二次方程有2个不相等的实数根;(2)当=0时,一元二次方程有2个相等的实数根;(3)当0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,.注意它的使用条件为a0, 0.要点诠释:1.一元二次方程 的根的判别式正反都成立利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题 2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二
4、次方程要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就
5、是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1已知(m1)x|m|+1+3x20是关于x的一元二次方程,求m的值.【答案与解析】依题意得|m|+12,即|m|1,解得m1,又m10,m1,故m1.【总结升华】依题意可知m10与|m|+12必须同时成立,因此求出满足上述两个条件的m的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程是关于的一元二次方程,求m的值【答案】 根据题意得 解得所以当方程是关于的一元二次方程时,类型二、一元二次方程的解法2解下列一元二次方程 (1); (2);
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 复习 巩固 知识 讲解
限制150内