多边形和圆的初步认识(教案)(4页).doc
《多边形和圆的初步认识(教案)(4页).doc》由会员分享,可在线阅读,更多相关《多边形和圆的初步认识(教案)(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-多边形和圆的初步认识(教案)-第 4 页 多边形和圆的初步认识【学习目标】了解多边形、圆、扇形的相关概念,并能够利用其基本性质解决简单问题【学习重难点】学习重点:多边形、圆、扇形的相关概念及相关性质学习难点:对n边形相关特征的探讨。【学习过程】一、概念学习三角形、四边形、五边形、六边形等都是 ,他们都是由 组成的 。在右图中,多边形ABCDE的顶点是 ;多边形的边是 多边形的内角(简称多边形的角)有 ;AC、AD都是连接不相邻两个顶点的线段,像这样的线段叫做多边形的 概念辨析:下面四个图形中,是多边形的是( ) A B C D探究一:观察右边四边形ABCD 和五边形ABCDE (1)四边形A
2、BCD有 个顶点 条边 个内角 过四边形ABCD的每个顶点有 条对角线 四边形ABCD总共有 对角线。 (2) 五边形ABCDE有 顶点 条边 内角(4) 过五边形ABCDE的每个顶点有 条对角线 (5) 五边形ABCDE总共有 对角线。 数一数:下图中的多边形,它们分别有几个顶点,几条边,几个内角,你发现什么规律了吗?多边形三边形四边形五边形六边形n边形顶点数边数内角数思考:若一个多边形有12个内角,则这个多边形为( )边形,若一个多边形有20个顶点,则这个多边形为( )边形.思考:n边有多少个顶点,多少条边,多少个内角? 过n边形的每个顶点有几条对角线?n边形一共有多少条对角线?各边相等、
3、各角相等的多边形叫做正多边形。图中的正多边形分别叫 、 、探究二:你能用一根细绳和一只笔画出一个圆吗?试一试吧!总结:在平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做 。固定的端点O称为 ,线段OA称为 。圆上任意两点A、B间的部分叫做 ,简称为 ,记作 ,读作 ;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做 ;顶点在圆心的角叫做 。补充:圆的面积公式 ;圆的周长公式: 练习:将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,求这三个扇形的圆心角的度数。变式:将一个圆分成三个大小相同的扇形,那每个扇形的圆心角的度数是 ;若这个圆的半径是2,
4、则其中一个扇形的面积是 。【随堂练习】1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )2、 观察如图所示图形,回答下列问题:(1) 从八边形ABCDEFGH的顶点A出发,可以画出多少条对角线?分别用字母表示出来;(2) 这些对角线将八边形分成了多少个三角形?3、 半径为1的圆中,扇形AOB的圆心角为120,请在圆内画出这个扇形并求它的面积【课后练习】1、如图,图中三角形的个数为 2.我们熟悉的平面图形中的多边形有_等.它们是由一些_同一条直线上的线段依次_相连组成的_图形.3.圆上两点之间的部分叫做_,由一条_和经过它的端点的两条_所组成的图形叫做扇形.4.下列几何图形中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多边形 初步 认识 教案
限制150内