低强度超声联合iPSCs源性神经嵴干细胞对周围神经损伤修复的作用.doc
《低强度超声联合iPSCs源性神经嵴干细胞对周围神经损伤修复的作用.doc》由会员分享,可在线阅读,更多相关《低强度超声联合iPSCs源性神经嵴干细胞对周围神经损伤修复的作用.doc(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、低强度超声联合iPSCs源性神经嵴干细胞对周围神经损伤修复的作用摘 要目前周围神经损伤在人群中发病率较高,在世界范围内影响着超过百万人的生活状态。压迫、撕裂等外伤或局部缺血等因素都可能引起神经系统部分或全部损伤,从而引起运动、感觉和自主功能的丧失,甚至神经元死亡。随着科学技术的发展,多种治疗方法的使用使得周围神经损伤的修复效果得到明显的提高,但离神经系统真正的形态和功能重建还相差甚远,因此急需一种有效且无副作用的治疗方法用于周围神经损伤的修复。在课题组前期研究基础上,本文以诱导性多潜能干细胞源性神经嵴干细胞(induced pluripotent stem cells derived neur
2、al crest stem cells, iPSCs-NCSCs)为种子细胞,以聚左旋乳酸(poly(L-lactic acid), PLLA)为材料制备组织工程神经导管,联合低强度超声(low intensity pulsed ultrasound, LIPUS)刺激,以大鼠坐骨神经断裂为模型,在体探索LIPUS联合iPSCs-NCSCs对周围神经损伤修复的作用,重点考察了LIPUS联合iPSCs-NCSCs对周围神经损伤之后坐骨神经功能指数(sciatic function index, SFI)、静态坐骨神经功能指数(static sciatic index, SSI)、坐骨神经传导速度
3、(nerve conduct velocity, NCV)以及组织形态学方面功能恢复的影响。主要研究工作和实验结果如下: 组织工程神经导管的制备通过电纺技术制备PLLA纳米纤维支架,分别利用场发射环境扫描电镜(field emission scanning electron microscope, FESEM)和Image-Pro Plus测定支架表面特征和计算纤维直径、利用INSTRON-E1000拉伸机测定PLLA导管的力学性能,以及LIVE/DEAD试剂盒检测PLLA组织工程神经导管中iPSCs-NCSCs的活性。结果显示所得PLLA纳米纤维呈现出较好的纵向排列性,其直径为251.655
4、9.37 nm,PLLA神经导管的弹性模量为34.490.47 MPa,抗拉强度为1.860.21 MPa,并且PLLA神经组织导管中细胞存活率超过95%。 LIPUS联合iPSCs-NCSC对周围神经损伤修复的影响20只200-250 g的SD大鼠用于建立坐骨神经缺损10 mm动物模型。实验共分成五组,包括自体移植组(标记为Autograft)、PLLA空导管组(标记为C)、PLLA空导管联合低强度超声组(标记为C/LIPUS)、PLLA导管植入iPSCs-NCSC细胞组(标记为C/iPSCs)以及PLLA导管植入iPSCs-NCSC细胞并联合低强度超声组(标记为C/iPSCs/LIPUS)
5、,其中Autograft组为对照组。超声刺激处理时实现固定频率(1 MHz)、占空比(Duty cycle) (20%)、脉冲重复频率(Pulse repetition frequency, PRF) (100 Hz)的体外辐射,其强度为0.3 W/cm2,每次刺激时间为5分钟,共持续2周。分别通过术后大体观察,术后一个月和三个月的SFI、SSI检测,术后三个月的NCV检测以及形态学组织学检测以分析LIPUS联合种子细胞iPSCs-NCSCs对周围神经损伤修复的影响。大体观察发现,术后一个月观察患趾伤口发现偶有溃烂,术侧肌肉萎缩严重,饮食、自由活动状况良好;三个月无溃烂发生,饮食、自由活动状况
6、良好,肌肉萎缩较轻,术后三月解剖发现无明显炎症反应。术后一个月和三个月的SFI、SSI以及NCV结果显示,各实验组的功能恢复效果较自体移植组差(P95% of iPSCs-NCSCs survived in the PLLA nerve conduits. Effects of LIPUS combined with iPSCs-NCSCs on repair of peripheral nerve injury20 adult female SD rats weighing 200-250 g were used to establish 10 mm defect model of peri
7、pheral nerve injury. All the animals were divided into five groups randomly, which includedthe group of Autograft as control, the group of PLLA conduits without cells (represented as C), the group of PLLA conduits applied low intensity pulsed ultrasound without cells (represented as C/LIPUS), the gr
8、oup of PLLA conduits seeded with iPSCs-NCSCs (represented as C/iPSCs) and the group of PLLA conduits applied low intensity pulsed ultrasound and seeded with iPSCs-NCSCs (represented as C/iPSCs/LIPUS). LIPUS stimulation was applied with fixed frequency (1 MHz), duty ratio (20%), pulse repetition freq
9、uency (PRF) (100 Hz), ultrasonic intensity (0.3 W/cm2). The treatment was 5 minutes a day over a period of 2 weeks.Effects of LIPUS combined with iPSCs-NCSCs on repair of peripheral nerve injury were measured through gross observation, SFI and SSI at 1 and 3 months after surgery, NCV and the morphol
10、ogical histology assessment at 3 months after surgery. Gross observation results showed that ulceration occurred occasionally and the muscle atrophy in operated side was serious at 1 month after surgery. These conditions were alleviated at 3 month after surgery. No obvious inflammation reaction was
11、observed in grafts after anatomy at 3 month. The outcome of SFI, SSI and NCV indicated that although all the experiment groups was less efficiency than Autograft group (P0.05), the function recovery of the group C/iPSCs/LIPUS was better than other three groups. On the other hand, under the same cond
12、ition, the function recovery of the groups stimulated by LIPUS were more efficiency than those groups with sham LIPUS treatment.The results of Hematoxylin/eosin (HE) staining and Bielschowsky staining suggested that compared to group C, group C/LIPUS and group C/iPSCs, the regeneration of angiogenes
13、is and nerve fibers were observed in group Autograft and group C/LIPUS/iPSCs. Besides, under the same condition, the number of regenerated angiogenesis and nerve fibers of the groups stimulated by LIPUS were more than those groups with sham LIPUS treatment. As the immunofluorescence of S100, which w
14、as the marker of Schwann cells, the density in group Autograft, group C/iPSCs and C/LIPUS/iPSCs was higher when compared with group C and group C/LIPUS.In summary, 0.3 W/cm2 LIPUS combined with iPSCs-NCSCs could accelerate the regeneration of nerve after injury, which showed that this study hadsome
15、clinical significance in exploring efficient methods for peripheral nerve repair.Keywords:Peripheral nerve repair, Tissue engineering, Low intensity pulsed ultrasound, Induced pluripotent stem cells-neural crest stem cells, Nerve conduit目 录中文摘要I英文摘要III目 录VII英汉缩略词表IX1 绪论11.1 周围神经损伤11.2 用于周围神经损伤修复的组织工
16、程方法21.2.1 用于周围神经损伤修复中的神经导管31.2.2 用于周围神经损伤修复中的种子细胞51.2.3 低强度超声在周围神经损伤修复中的应用81.3 研究意义101.4 本文研究的目的和研究内容101.4.1 本文研究的目的101.4.2 本文的主要研究内容101.4.3 技术路线102 PLLA组织功能神经导管的制备122.1 引言122.2 材料与试剂122.2.1 实验细胞122.2.2 实验仪器及耗材122.2.3 实验试剂132.2.4 主要试剂的配制142.3 实验方法142.3.1 iPSCs-NCSCs的培养142.3.2 PLLA纳米纤维的制备及其表面特征检测162.
17、3.3 PLLA纳米导管的制备及其力学强度检测162.3.4 PLLA神经导管的制备162.4 实验结果172.4.1 iPSCs-NCSCs的培养和外形特征172.4.2 PLLA纳米纤维支架表面特征182.4.3 PLLA纳米导管表面和力学特征182.4.4 PLLA神经导管中细胞活性192.5 讨论与分析202.6 本章小结213 LIPUS联合iPSCs-NCSCs对周围神经损伤修复的影响223.1 引言223.2 材料与仪器223.2.1 实验细胞与实验动物223.2.2 实验仪器及耗材223.2.3 实验试剂233.2.4 主要试剂的配制方案233.3 实验方法243.3.1 细胞
18、培养243.3.2 PLLA神经导管制备243.3.3 动物饲养243.3.4 实验动物分组243.3.5 动物模型建立243.3.6 超声刺激253.3.7 大体观察263.3.8 步态分析273.3.9 坐骨神经传导速度检测273.3.10 冰冻切片273.3.11 HE检测283.3.12 Bielschowsky神经纤维染色283.3.13 S100免疫荧光染色293.3.14 数据分析293.4 实验结果293.4.1 大体观察293.4.2 坐骨神经功能指数检测303.4.3 大鼠坐骨神经传导速度检测313.4.4 HE染色结果323.4.5 Bielschowsky神经纤维银染3
19、33.4.6 S100免疫荧光染色343.5 分析与讨论353.6 本章小结394结论与展望404.1 主要结论404.2 后续工作展望40致 谢41参考文献40附 录50A. 作者在攻读学位期间发表的论文目录50B. 作者在攻读学位期间参与的科研项目目录50英汉缩略词表英文缩写英文全称中文名称PLLAPoly(L-lactic acid)聚左旋乳酸PGAPoly(glycolic acid)聚乙醇酸PCLPolycaprolactone聚己内酯PLGAPoly(L-lactic-co-glycolic acid)聚乳酸/羟基乙酸共聚物FDAFood and Drug Administrati
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 强度 超声 联合 iPSCs 神经 干细胞 周围神经 损伤 修复 作用
限制150内