千题百炼高中数学100个热点问题三第100炼利用同构特点解决问题.doc
《千题百炼高中数学100个热点问题三第100炼利用同构特点解决问题.doc》由会员分享,可在线阅读,更多相关《千题百炼高中数学100个热点问题三第100炼利用同构特点解决问题.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第100炼 利用同构特点解决问题一、基础知识:1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程和呈现同构特征,则可视为方程的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。可比较大小或解不等式(3)在解析几何中的应用:如果满足的方程为同构式,则为方程所表示曲线上的两点。特别的,若满足的方程是直线方程,则该方程即为直线的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于与的同构式,从而将同构式设为辅助数列便于求解二、典型例题:例1:(2015天津十二校
2、联考)设,满足 ,则( ) A. B. C. D. 思路:本题研究对象并非,而是,进而可变形为,观察上下式子左边结构相同,进而可将相同的结构视为一个函数,而等式右边两个结果互为相反数,可联想到函数的奇偶性,从而利用函数性质求解解:设,可得为奇函数,由题意可得: 答案:B例2:若函数在区间上的值域为,则实数的取值范围是_思路:注意到是增函数,从而得到,即,发现两个式子为的同构式,进而将同构式视为一个方程,而为该方程的两个根,的取值只需要保证方程有两根即可解:为增函数 为方程在上的两个根,即有两个不同的根令所以方程变形为:,结合图像可得:答案:例3:设,则|“”是“”的()A. 充分不必要条件 B
3、. 必要不充分条件 C. 充要条件 D. 既不充要又不必要条件思路:观察可发现其同构的特点,所以将这种结构设为函数,分析其单调性。可得为增函数。所以,即,所以是充要条件答案:C例4:若,则( )A. B. C. D. 答案:C思路:本题从选项出发可发现,每个选项通过不等式变形将分居在不等式两侧后都具备同构的特点, 所以考虑将相同的形式构造为函数,从而只需判断函数在的单调性即可解: A选项:,设 ,设,则有恒成立,所以在单调递增,所以,从而存在,使得,由单调性可判断出: ,所以在不单调,不等式不会恒成立B选项:,设可知单调递增。所以应该,B错误C选项:,构造函数,则在恒成立。所以在单调递减,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 千题百炼 高中数学 100 热点问题 利用 同构 特点 解决问题
限制150内