教案设计高中数学人教B版教案必修五第一章解三角形复习.doc
《教案设计高中数学人教B版教案必修五第一章解三角形复习.doc》由会员分享,可在线阅读,更多相关《教案设计高中数学人教B版教案必修五第一章解三角形复习.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、教案设计高中数学人教B版教案 必修五:第一章解三角形 复习教学设计整体设计教学分析首先了解新课标对本章的定位解三角形作为三角系列的最后一章,突出了基础性、选择性与时代性本章重在研究三角形边角之间的数量关系,如正弦定理、余弦定理等正弦定理、余弦定理更深刻地反映了三角形的度量本质,成为解三角形的主要工具本章的数学思想方法是一条看不见的暗线,数学思想方法是数学的精髓在初中,教科书着重从空间形式定性地讨论三角形中线段与角之间的位置关系,本章主要是定量地揭示三角形边、角之间的数量关系,从而较清晰地解决了三角形的确定性问题本章对两个定理的推导引入中十分强调这一量化思想方法,并选择了更有教育价值的正弦定理和
2、余弦定理的证明方法本章中融合了学生已学过的大部分几何知识,将解三角形作为几何度量问题来处理,突出几何背景,为学生理解数学中的量化思想,进一步学习数学奠定了基础三维目标1熟练掌握三角形中的边角关系2通过本节学习,要求对全章有一个清晰的认识,熟练掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力3注重思维引导及方法提炼,展现学生的主体作用,关注情感的积极体验,加强题后反思环节,提升习题效率,激发学生钻研数学的热情、兴趣和信心重点难点教学重点:掌握正、余弦定理及其推导过程并且能用它们解斜三角形教学难点:
3、正弦定理、余弦定理的灵活运用,及将实际问题转化为数学问题并正确地解出这个数学问题课时安排1课时教学过程导入新课(直接引入)本节课我们将对全章的知识、方法进行系统的归纳总结;系统掌握解三角形的方法与技巧由此展开新课的探究推进新课 (1)本章我们学习了哪些知识内容?请画出本章的知识结构图.(2)解斜三角形要用到正弦定理、余弦定理,那么正弦定理、余弦定理都有哪些应用?(3)在解三角形时应用两个定理要注意些什么问题?若求一个三角形的角时,既可以用正弦定理,也可以用余弦定理,怎样选择较好?(4)本章中解三角形的知识主要应用于怎样的一些问题?(5)总结从初中到高中测量河流宽度和物体高度的方法.活动:教师引
4、导学生画出本章知识框图,教师打出课件演示:从图中我们很清晰地看出本章我们学习了正弦定理、余弦定理以及应用这两个定理解三角形,由于本章内容实践性很强,之后又重点研究了两个定理在测量距离、高度、角度等问题中的一些应用教师与学生一起回忆正弦定理、余弦定理的内容及应用如下:正弦定理、余弦定理:,a2b2c22bccosA,b2c2a22accosB,c2a2b22abcosC.正弦定理、余弦定理的应用:利用正弦定理,可以解决以下两类有关三角形的问题已知两角和任一边,求其他两边和一角已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)利用余弦定理,可以解决以下两类有关三角形的问题已知三
5、边,求三个角;已知两边和它们的夹角,求第三边和其他两个角在求解一个三角形时,既可以用正弦定理,也可以用余弦定理,要尽量选择运算量较小,不产生讨论的方法求解若求边,尽量用正弦定理;若求角,尽量用余弦定理除了正弦定理、余弦定理外,我们还学习了三角形面积公式SbcsinAacsinBabsinC,利用它我们可以解决已知两边及其夹角求三角形的面积教师利用多媒体投影演示课件如下:解斜三角形时可用的定理和公式适用类型备注余弦定理a2b2c22bccosAb2a2c22accosBc2b2a22bacosC(1)已知三边(2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理2R(3)已知两角和一边(4
6、)已知两边及其中一边的对角类型(3)在有解时只有一解,类型(4)可有两解、一解和无解三角形面积公式SbcsinAacsinBabsinC(5)已知两边及其夹角教师点拨学生,以上这些知识与初中的边角关系、勾股定理等内容构成三角形内容的有机整体实际上,正弦定理只是初中“三角形中大角对大边,小角对小边”的边角关系的量化余弦定理是初中“已知两边及其夹角,则这两个三角形全等”的量化,又是勾股定理的推广本章的应用举例也是在初中学习的一些简单测量的基础上,应用了正弦定理、余弦定理解关于斜三角形的问题在应用两个定理等知识解决一些与测量和几何计算有关的问题时,需注意以下几点:在利用正弦定理求角时,由于正弦函数在
7、(0,)内不严格单调,所以角的个数可能不唯一,这时应注意借助已知条件加以检验,务必做到不漏解,不多解在运用正弦定理与余弦定理进行有关三角形内角证明时,余弦定理会省去取舍的麻烦,但同时要注意在根据三角函数求角时,应先确定其范围在进行边角,角边转换时,注意运用正弦定理和余弦定理的变形形式讨论结果:(1)、(2)、(5)略(3)在应用两个定理求解时,注意与平面几何知识的融合若求解一个三角形时两个定理都可用,则求边宜选正弦定理,求角宜选余弦定理,但要具体问题具体分析,从中选择最优解法(4)本章知识主要应用测量、航海、建筑等在日常生活中与三角形有关的问题例1判断满足下列条件的三角形形状(1)acosAb
8、cosB;(2)sinC.活动:教师与学生一起探究判定三角形形状的方法有哪些学生思考后可得出确定三角形的形状主要有两条途径:(1)化边为角,(2)化角为边鼓励学生尽量一题多解,比较各种解法的优劣解:(1)方法一:用余弦定理,得ab.c2(a2b2)a4b4(a2b2)(a2b2)a2b2或c2a2b2.三角形是等腰三角形或直角三角形方法二:用正弦定理,得sinAcosAsinBcosB,sin2Asin2B.A、B为三角形的内角,2A2B或2A2B180.AB或AB90.因此三角形为等腰三角形或直角三角形(2)方法一:先用正弦定理,可得c,即ccosAccosBab.再用余弦定理,得ccab.
9、化简并整理,得a3b3a2bab2ac2bc20,(ab)(a2b2c2)0.a0,b0,a2b2c20,即a2b2c2.三角形为直角三角形方法二:sinAsin(BC),sinBsin(AC),原式可化为sinCcosAcosBsinCsinAsinBsin(BC)sin(AC)sinBcosCcosBsinCsinAcosCcosAsinC.sinBcosCsinAcosC0,即cosC(sinAsinB)0.0A180,0B180,sinAsinB0.cosC0.又0C180,C90.三角形为直角三角形点评:第(1)题中的第2种解法得出sin2Asin2B时,很容易直接得出2A2B,所以
10、AB.这样就漏掉了一种情况,因为sin2Asin2B中有可能推出2A与2B两角互补,这点应引起学生注意第(2)题中绕开正、余弦定理通过三角函数值的符号判定也是一种不错的选择,但学生不易想到,因此熟悉三角形中sinAsin(BC),cosAcos(BC)等常见结论对解三角形大有益处 变式训练ABC的三内角A、B、C的对边边长分别为a、b、c.若ab,A2B,则cosB等于()A. B. C. D.答案:B解析:由题意得2cosB,cosB.例2在ABC中,若ABC的面积为S,且2S(ab)2c2,求tanC的值活动:本题涉及三角形的面积,面积公式又是以三角形的三边a、b、c的形式给出,从哪里入手
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案设计 高中 学人 教案 必修 第一章 三角形 复习
限制150内