《2022年二次函数知识点复习 2.pdf》由会员分享,可在线阅读,更多相关《2022年二次函数知识点复习 2.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载二次函数知识点一、二次函数概念:1 二次函数的概念: 一般地,形如2yaxbxc ( abc, , 是常数,0a) 的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而 bc, 可以为零2. 二次函数2yaxbxc的结构特征: 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2abc, , 是常数, a 是二次项系数,b是一次项系数,c 是常数项二、二次函数的基本形式1. 二次函数基本形式:2yax 的性质:a 的绝对值越大,抛物线的开口越小。2. 2yaxc 的性质:上加下减。3. 2ya xh的性质:左加右减。4. 2ya xhk 的性质
2、:a的符号开口方向顶点坐标对称轴性质0a向上00,y轴0 x时,y随 x 的增大而增大;0 x时,y随x 的增大而减小;0 x时,y有最小值00a向下00,y轴0 x时,y随 x 的增大而减小;0 x时,y随x 的增大而增大;0 x时,y有最大值0a的符号开口方向顶点坐标对称轴性质0a向上0c,y轴0 x时,y随 x 的增大而增大;0 x时,y随x 的增大而减小;0 x时,y有最小值 c 0a向下0c,y轴0 x时,y随 x 的增大而减小;0 x时,y随x 的增大而增大;0 x时,y有最大值 c a 的符号开口方向顶点坐标对称轴性质0a向上0h,X=h xh时,y随 x 的增大而增大;xh时,
3、y随x的增大而减小;xh时,y有最小值00a向下0h,X=h xh时,y随 x 的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0a 的符号开口方向顶点坐标对称轴性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备欢迎下载三、二次函数图象的平移2. 平移规律Y=ax 2平移成 y=a(x-h)2+k 在原有函数的基础上“h值正右移,负左移;k值正上移,负下移” 概括成八个字 “左加右减,上加下减”四、二次函数2ya xhk与2yaxbxc的比较从解析式上看,2ya xhk 与2yaxbxc是两种不同的表达形式,
4、后者通过配方可以得到前者,即22424bacbya xaa,其中2424bacbhkaa,五、二次函数2yaxbxc图象的画法五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()ya xhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、 与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与 x 轴的交点10 x ,20 x ,(若与 x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y轴的交点 . 六、二次函数2yaxbxc的性质1. 当0a时,抛物线开口
5、向上,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随 x 的增大而减小;当2bxa时,y随 x 的增大而增大;当2bxa时,y有最小值244acba2. 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随x 的增大而增大;当2bxa时,y随 x 的增大而减小;当2bxa时,y有最大值244acba七、二次函数解析式的表示方法1. 一般式:2yaxbxc ( a,b, c 为常数,0a) ;知道三点的坐标用一般式。2. 顶点式:2()ya xhk ( a,h,k为常数,0a) ;知道顶点坐标或对称轴和最值时用顶点式。3. 交点式:
6、12()()ya xxxx(0a,1x ,2x 是抛物线与x轴两交点的横坐标) ,当函数与x 轴有两个交点时,用交点式。注意中间的“-” 。注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240bac时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化. 0a向上hk,X=h xh时,y随 x 的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k0a向下hk,X=h xh时,y随 x 的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k精选学习资料 - - - - - - - - - 名
7、师归纳总结 - - - - - - -第 2 页,共 4 页学习必备欢迎下载八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2yaxbxc中, a作为二次项系数,显然0a 当0a时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; 当0a时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大总结起来,a 决定了抛物线开口的大小和方向,a的正负决定开口方向,a 的大小决定开口的大小2. 一次项系数b在二次项系数a 确定的前提下,b决定了抛物线的对称轴 在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧;当0b时,02ba,即抛物线的
8、对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧 在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧总结起来,在a 确定的前提下,b决定了抛物线对称轴的位置ab的符号的判定:对称轴abx2在y轴左边则0ab,在y轴的右侧则0ab3. 常数项 c 当0c时,抛物线与y轴的交点在x 轴上方,即抛物线与y轴交点的纵坐标为正; 当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; 当0c时,抛物线与y轴的交点在x 轴下方,即抛物线与y轴交点的
9、纵坐标为负总结起来,c 决定了抛物线与y轴交点的位置九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20axbxc是二次函数2yaxbxc 当函数值0y时的特殊情况 . 图象与 x 轴的交点个数: 当240bac时,图象与x 轴交于两点1200A xB x,12()xx,其中的12xx,是一元二次方程200axbxca的两根 当0时,图象与x轴只有一个交点; 当0时,图象与x轴没有交点 . 1当0a时,图象落在x 轴的上方,无论x 为任何实数,都有0y;2当0a时,图象落在x 轴的下方,无论x 为任何实数,都有0y2. 抛物线2yaxbx
10、c 的图象与y轴一定相交,交点坐标为(0 ,)c ;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备欢迎下载3. 二次函数常用解题方法总结: 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数2yaxbxc 中 a ,b, c 的符号,或由二次函数中a,b, c 的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交
11、点坐标. 十、函数的应用二次函数应用刹车距离何时获得最大利润最大面积是多少21.已知:如图,二次函数y=ax2+bx+c 的图象与x 轴交于 A、B 两点,其中A 点坐标为 (-1,0),点 C(0,5),另抛物线经过点(1,8), M 为它的顶点 . (1)求抛物线的解析式;(2)求直线 BC 的解析式。某商店销售一种商品,每件的进价为2.50 元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50 元时,销售量为500 件,而单价每降低1 元,就可以多售出200 件 .请你分析,销售单价多少时,可以获利最大. (2007 河北省)如图 13, 已知二次函数24yaxxc的图像经过点A 和点 B(1)求该二次函数的表达式;( 2)写出该抛物线的对称轴及顶点坐标;( 3)点 P(m,m)与点 Q 均在该函数图像上(其中m0) ,且这两点关于抛物线的对称轴对称,求m 的值及点 Q 到 x 轴的距离x y O 3 9 1 1 A B 图 13 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页
限制150内