射频识别和传感器技术实验讲义(2015-1-4版)(81页).doc
《射频识别和传感器技术实验讲义(2015-1-4版)(81页).doc》由会员分享,可在线阅读,更多相关《射频识别和传感器技术实验讲义(2015-1-4版)(81页).doc(81页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-射频识别和传感器技术实验讲义(2015-1-4版)-第 81 页射频识别与传感器技术实验讲义实验一1、实验项目:125KHz RFID实验2、目的与意义熟悉CVT-RFID MCU-II实验箱的硬件结构和原理,掌握实验箱配套控制软件的使用。了解RFID的基本工作原理,了解典型的密耦合系统,了解125KHz RFID系统应答器芯片和阅读器芯片。掌握125KHz只读卡、读写卡操作的基本原理。通过相关信号的测量加深对信号调制与解调、125KHz RFID技术只读卡、读写卡相关协议标准的理解。3、实验环境(设备与仪器) CVT-RFID MCU实验箱一台,PC机一台,双踪示波器一台,PC机操作系统W
2、indows XP,RFID综合实验平台环境4、背景知识 1)实验箱系统硬件原理简介整个系统主要由以下几部分组成:(1)主处理器采用ATMEL的高性能AVR单片机,主要处理RFID标签的读写操作、ZIGBEE模块的数据传输、键盘和显示电路的处理,以及和上位机的通信。系统有标准JTAG接口和ISP下载接口,方便程序的调试和下载。(2)CPLD采用ALTERA的MAX系列CPLD,完成系统和上位机通信串口的切换工作,另外还挂接了键盘的行信号ROW0ROW3。(3)125KHz RFID采用瑞士EM MICROELECTRONIC的低频RFID处理芯片,完成对125KHz标签的自动寻卡、读写操作等。
3、(4)ISO14443 RFID采用PHILIPS的高频RFID处理芯片,工作频率为13.56MHz,完成对ISO14443标签的寻卡、防冲突、选择卡、密码下载和校验、修改密码和读写操作等。(5)ISO15693 RFID采用模拟分立元件的设计方法,使RFID读写器的内部结构更加清晰,工作频率为13.56MHz,可以完成对ISO15693标签的寻卡、防冲突、选择卡、密码下载和校验、修改密码和读写操作等。(6)900MHz RFID采用模块化的接口设计,增强超高频RFID的抗干扰性。完成对900MHz标签的寻卡、读写操作等。(7)ZIGBEE无线通信部分采用TI的无线通信单片机,系统有2个ZIG
4、BEE模块,可以实现相互之间数据的无线透传。(8)键盘和显示部分键盘采用44矩阵键盘,其中列信号线COL0COL3连接到主处理器上,考虑到主处理器IO口不够,所以行信号线ROW0ROW3挂接在CPLD上;显示屏采用12864的点阵屏,所以口线均连接到主处理器上。 图1-1 系统硬件原理框图 2)125KHz RFID硬件原理采用低频RFID的CMOS集成收发器电路基站芯片,有以下功能和特点: 100 到 150 kHz 载波频率范围。 利用载波驱动天线,集成的锁相环系统,以实现用自适应载波频率来匹配天线谐振频率。 用于可读写应答器的AM调制磁场。对从天线传输来的应答器的调制信号进行AM解调。
5、和微处理器通过串行接口通讯。 无需外部晶振。 睡眠模式电流低至1A。具体工作原理是:通过外部线圈及内部集成的电容一起组成谐振电路,从连续的125KHZ磁场中获取能量启动。芯片从内部的EEPROM中读出数据,并通过和线圈并联的负载的开断产生深幅调制,将数据发送出去。通过对125KHZ磁场的100%幅度调制,可以执行各种命令和更新EEPROM中的数据。图1-2 125KHz RFID硬件原理框图 3)125KHz测量点图1-3 125KHz测量点 J22:GND测量点,信号公共地。 J23:RDY_CLK测量点,射频芯片返回给处理器的同步时钟信号测量点。 J24:MOD测量点,处理器发送的调制信号
6、测量点。 J25:DEMOD_OUT测量点,射频芯片返回给处理器的数据输出信号测量点。 4)125KHz通信协议简介这里介绍ISO18000-2标准协议,ISO/IEC 18000-2 定义了125134.2KHz的空中接口通信协议参数,规定了时序参数、信号特性、标签与读写器之间通信的物理层架构、协议和指令,以及多标签读取时的防碰撞方法。 1、调制 标签和读写器之间采用ASK调制方式,调制深度为100%,如图1-4所示:图1-4 125KHz ASK调制波形 图1-4中的时间参数如表1-1所示:表1-1 调制时间参数注:Tac = 1/fac 8us2、读写器到标签(1)数据编码读写器到标签的
7、数据编码包括:数据0、数据1、code violation和stop condition,如图1-5所示:图 1-5 读写器到标签的数据编码图1-5中的时间参数如表1-2所示:表1-2 数据编码时间参数注:Tac = 1/fac 8us(2)SOF读写器到标签的SOF起同步作用,由一个数据0和一个code violation组成,如图1-6所示:图1-6 读写器到标签的SOF(3)EOFEOF由stop condition组成,如图1-7所示:图1-7 读写器到标签的EOF3、标签到读写器(1)数据编码标签到读写器的数据编码有两种速率:4kbit/s和2kbit/s,其中4kbit/s速率用在
8、International Standard command,2kbit/s速率用在Inventory command。如图1-8所示:图1-8 标签到读写器的数据编码(2)SOF标签到读写器的SOF由3bits位数据110组成,如图1-9所示:图1-9 标签到读写器的SOF(3)EOF标签到读写器的EOF在ISO18000-2标准协议里没有定义。 5)125KHz ID卡简介实验中用到的125KHz ID卡分只读卡和可读可写卡两种,下面是对这两种卡的简单介绍: 1、只读卡主要特征: 64位EEPROM 多种编码(Manchester,Bi-phase,miller,PSK,FSK) 多种速率
9、 工作频率范围(100-150KHz) 工作温度范围(-40到+85)存储器结构:64位的EEPROM由5个部分组成,其中9位用作数据头(全1),数据头后紧接着10组4位的数据,每4位数据跟着1位奇偶校验位,最后一行由4位奇偶校验位和1位停止位(停止位规定为0)组成,详细结构如表1-3所示:表1-3 125KHz只读ID卡存储器组成结构1111111119 header bits8 version bits or customer IDD00D01D02D03P010 line parity bits (P0-P9)D10D11D12D13P132 data bitsD20D21D22D23P
10、2D30D31D32D33P3D40D41D42D43P4D50D51D52D53P5D60D61D62D63P6D70D71D72D73P7D80D81D82D83P8D90D91D92D93P94 column parity bitsPC0PC1PC2PC3S01 stop bit set to logic 0 2、可读可写卡主要特征: 16个32位的数据块组成512位EEPROM 32位密码读写保护 32位唯一的ID码 10位客户码 锁定位可以将EEPROM的数据块变成只读模式 多种编码(Manchester,Bi-phase,miller,PSK,FSK) 多种速率 工作频率范围(10
11、0-150KHz) 工作温度范围(-40到+85)存储器结构:512位的EEPROM由16个32位的数据块组成,EEPROM的块被编号成0到15,每块的位被编号为位0到位31。访问总是从LSB开始的。这32bit的EEPROM字段,是以一个字段的写命令编程的。开始的两个块是被芯片制造商规划安排的只读块(块0和块1)。它们被分别写入有该芯片的类型、版本,客户码和唯一序列号(UID),再往下的3个块(块2到块4),用来定义器件的操作选项,分别为密码字段、保护字段和配置字段。块5到块15是用户可以自由使用的空间。详细结构如表1-4所示:表1-4 125KHz可读写ID卡存储器组成结构地址编号描述类型
12、B0 B310芯片类型/谐振电容/用户代码只读Ct0 Ct311序列号UID只读Uid0Uid312密码只写Ps0 Ps313保护字段OTPPr0 Pr314配置字段读写Co0 C0315用户空间读写Us0 Us316用户空间读写Us0 Us317用户空间读写Us0 Us318用户空间读写Us0 Us319用户空间读写Us0 Us3110用户空间读写Us0 Us3111用户空间读写Us0 Us3112用户空间读写Us0 Us3113用户空间读写Us0 Us3114用户空间读写Us0 Us3115用户空间读写Us0 Us31注:OTP表示该字段可以一次性编程写入数据,写入后的数据不能再更改。块0
13、存放卡片信息及通用码等,该块为只读块。块1存放卡片的身份识别码(UID),该块为只读块。块2存放卡片密码,该块为只写块,为了保护卡片密码,该块在本平台中不开放写权限。 块3存放卡片保护字,用于控制卡片每块的读写权限,该块每一位都是一次性写入,写入后不可修改,为保证卡片正常使用,在本平台中不开放该块的写权限。 块4存放卡片配置字,用于配置卡片每块的加密情况,该块可读可写,为保证卡片正常使用,在本平台中不开放该块的写权限。块5-块15为用户数据区,可读可写。 6)控制软件界面软件界面分布如图1-10。图1-10 软件界面图注:菜单栏 串口连接设置 实验操作区域 操作提示区域 协议显示列表 系统提示
14、 通讯协议格式如图1-11:Byte0Byte1Byte2Byte3Byte4 - Byte4+nByte4+n+1 - Byte4+n+20x430xBC帧长度模块类型命令CRC-16校验图1-11 通讯协议格式Byte0:帧头1,C的ASCII码Byte1:帧头2,Byte0的反码Byte2:Byte0到Byte4+n+2的总字节数Byte3:表示命令操作针对的模块0x00:表示设置实验类型0x01:表示125K0x04:表示900M0x05:表示Zigbee10x06:表示Zigbee2Byte4+n+1 - Byte4+n+2:Byte0到Byte4+n的16位CRC数据校验,高位在前
15、,低位在后CRC多项式:8408,初始值:FFFF5、实验内容与过程(一) 125KHz硬件基本实验1) 125KHz 时钟信号测量实验 1、测试线连接连接示波器:使用CH1 探头,地接到J22测试架,CH1探针接到J23测试架设置示波器:触发源选择CH,其余设置可以参照示波器使用说明书。 2、操作打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,启动只读自动识别标签。 3、观测信号,如图1-12所示:图1-12 解调电子标签返回的时钟信号图2)125KHz MOD信号测量实验 1、测试线连接连接示波器:使用CH1 探头、CH2探头,地都接到J22测试架,CH1探针接到J23
16、测试架,CH2接到J24测试架。设置示波器:触发源选择CH,其余设置可以参照示波器使用说明书。 2、操作打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,选择读写卡操作的读数据。 3、观测信号,如图1-13所示:图1-13 射频调制信号图3)125KHz 调制解调信号测量实验 1、测试线连接连接示波器:使用CH1 探头、CH2探头,地都接到J22测试架,CH1探针接到J24测试架,CH2接到J25测试架。设置示波器:触发源选择CH,其余设置可以参照示波器使用说明书。 2、操作打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,选择读写卡操作的读数据。 3、观测
17、信号,如图1-14所示:图1-14 射频调制解调信号图(二)125KHz ID只读卡读取实验1、 将串口连接到实验箱COM1上,实验箱通电。2、 打开RFID综合实验平台软件。3、 选择菜单栏中的通讯,点击设置,弹出设置实验类型对话框。图1-15 实验类型设置4、 串口设置,如果直接使用PC机串口1,选择COM1,如果使用USB转串口或其他方式,请选择相应串口,然后打开串口。5、 实验设置,选择实验类型为125k,点击设置。6、 选择LF 125K标签,连接串口线到实验箱串口1,如果直接使用PC机串口1,选择COM1,如果使用USB转串口或其他方式,请选择相应串口,然后打开串口。7、 点击只读
18、卡操作中的自动寻卡按钮,程序会不停的向125kHz模块发送寻卡命令。将125K只读卡放到125K天线附近,当125kHz模块读到有只读卡时,只读卡操作面板上会出现卡号显示,若没有识别到只读卡,则显示全0。8、 观察读到的卡号。如图1-16所示:图1-16 125K只读卡实验从图1-16可以看出,读取到这张ID卡的信息如下:Customer Code:3FData Item:00BF598DBit Rate:RF/64Encoder: Manchester9、 关闭自动寻卡。(三)125KHz ID可读写卡实验1、 将串口连接到实验箱COM1上,实验箱通电。2、 打开RFID综合实验平台软件。3
19、、 选择菜单栏中的通讯,点击设置,弹出设置实验类型对话框。4、 串口设置,如果直接使用PC机串口1,选择COM1,如果使用USB转串口或其他方式,请选择相应串口,然后打开串口。5、 实验设置,选择实验类型为125k,点击设置。6、 选择LF 125K标签,连接串口线到实验箱串口1,如果直接使用PC机串口1,选择COM1,如果使用USB转串口或其他方式,请选择相应串口,然后打开串口。7、 将125K可读写卡放到125K天线附近,在选择地址下拉菜单中选择一个地址,点击可读写卡操作中的读数据按钮,观察读到的卡号。如图1-17所示。图1- 17 125K可读写卡读数据实验从图1-17可以看出,这张ID
20、卡的地址5的数据为:00000000,可以选择不同的地址,然后读取数据。8、仍然选择地址5,在数据栏里把00000000改成12345678,点击写数据按钮,提示栏里会提示写入数据完成,这时再点击读数据按钮,查看地址5的数据写入是否成功。如图1-18所示。图1- 18 125K可读写卡写数据实验从图1-18可以看出,地址5的数据写入完成后,数据由00000000改成12345678,这表示对ID卡的写入数据时成功的。地址5到地址15是可读可写区,可以选择这些地址,进行写数据实验。6、综合思考与练习(1) 根据该实验箱给出的硬件原理图,找出125KHz RFID技术中使用的应答器和读写器核心芯片
21、型号,查找资料,进一步了解它们的引脚分布,分析其工作原理。(2) 分析125KHz RFID技术中的数据编码及调制解调技术。(3) 分析125KHz RFID技术对应的相关协议标准,总结一下本实验体现出了哪些部分。实验二1、实验项目:13.56MHz ISO/IEC 14443实验2、目的与意义 理解典型的近耦合系统,熟悉CVT-RFIDMCU-II实验箱基本操作,熟悉CVT-RFIDMCU-II综合实验平台,理解Mifare one卡操作基本原理,了解Mifare one卡通信协议。了解13.56MHz ISO/IEC 14443 RFID系统应答器芯片和阅读器芯片。进一步加强对13.56M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 射频 识别 传感器 技术 实验 讲义 2015 81
限制150内