导数综合应用复习题经典(4页).doc
《导数综合应用复习题经典(4页).doc》由会员分享,可在线阅读,更多相关《导数综合应用复习题经典(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-导数综合应用复习题经典-第 4 页导数综合应用复习题一、知识回顾:1导数与函数单调性的关系设函数在某个区间内可导,则在此区间内:(1),;(2)时,(单调递减也类似的结论)2单调区间的求解过程:已知 (1)分析的定义域; (2)求导数;(3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间3函数极值的求解步骤:(1)分析的定义域; (2)求导数并解方程;(3)判断出函数的单调性;(4)在定义域内导数为零且由增变减的地方取极大值;在定义域内导数为零且由减变增的地方取极小值。4函数在区间内的最值的求解步骤:利用单调性或者在求得极值的基础上再考虑端点值比较即可。二
2、、例题解析:例1、已知函数(1)若在R上单调,求的取值范围。(2)问是否存在值,使得在上单调递减,若存在,请求的取值范围。解:先求导得(1)在R上单调且是开口向上的二次函数恒成立,即,解得(2)要使得在上单调递减且是开口向上的二次函数对恒成立,即解得不存在值,使得在上单调递减。例2、已知函数, (1)讨论方程(为常数)的实根的个数。(2)若对,恒有成立,求的取值范围。(3)若对,恒有成立,求的取值范围。(4)若对,恒有成立,求的取值范围。解:(1)求导得:令 解得 ,此时递增,令 解得 , 此时递减,当时取极大值为当 时取极小值为方程(为常数)的实根的个数就是函数与的图象的交点个数当或时方程有1个实根;当或时方程有2个实根;当时方程有3个实根。(2)时,要使得恒成立,则只需由(1)可知时(3)时,要使得恒成立,即,设,则只需时令得或比较 得 即 (4)要有对,恒有成立,则只需在中由(1)可知时而的对称轴为且开口向下,当时即三、课堂练习:已知函数,1 求在上的最值。2 若对,恒成立,求的取值范围。3 若对,恒成立,求的取值范围。4 若,对,使得恒成立,求的取值范围。四、作业布置:自主收集广东近五年的高考试题中涉及导数知识的三道题并解答。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 综合 应用 复习题 经典
限制150内