必修1一元二次不等式的解法复习(含详细知识点和例题答案)(5页).doc
《必修1一元二次不等式的解法复习(含详细知识点和例题答案)(5页).doc》由会员分享,可在线阅读,更多相关《必修1一元二次不等式的解法复习(含详细知识点和例题答案)(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-一元二次不等式的定义象这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式探究一元二次不等式的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:二次函数有两个零点:于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函数的图象,如图,观察函数图象,可知:当 x5时,函数图象位于x轴上方,此时,y0,即;当0x5时,函数图象位于x轴下方,此时,y0与 0)与 x轴的相关位置,分为三种情况,这可以由一元二次方程 =0的判别式三种取值情况( 0,=0,0)来确定.因此,要分二种情况讨论
2、(2)a0分O,=0,0与0(或0) 计算判别式,分析不等式的解的情况:.0时,求根,.=0时,求根,.0时,方程无解, 写出解集.求解不等式的方法,就是将不等式转化为熟悉,可解的不等式,因此一元二次不等式的求解,也可采用以下解法。 x2+3x-40 (x+4)(x-1)0 或 或 -4x1或。 原不等式解集为x|-4x1。 x2+3x-40 (x+)2 |x+| -x+ -4x1。 原不等式解集为x|-4x1。 含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种: 一、按项的系数的符号分类,即;例1 解不等
3、式: 分析:本题二次项系数含有参数,故只需对二次项系数进行分类讨论。 解:解得方程 两根当时,解集为当时,不等式为,解集为当时, 解集为二、按判别式的符号分类,即;例2 解不等式分析 本题中由于的系数大于0,故只需考虑与根的情况。解: 当即时,解集为;当即0时,解集为;当或即,此时两根分别为,显然, 不等式的解集为例3解不等式 解 因所以当,即时,解集为;当,即时,解集为;当,即时,解集为R。三、按方程的根的大小来分类,即;例4解不等式分析:此不等式可以分解为:,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:,令,可得:当或时, ,故原不等式的解集为;当或时,,可得其解集为;当或时, ,解集为。-第 5 页-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 一元 二次 不等式 解法 复习 详细 知识点 例题 答案
限制150内