《小学四年级奥数思维训练全集(24页).doc》由会员分享,可在线阅读,更多相关《小学四年级奥数思维训练全集(24页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-小学四年级奥数思维训练全集-第 22 页小学四年级奥数思维训练全集专题一 找规律(一)专题简介:一般以下几个方面来找规律:1根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2根据相隔的每两个数的关系,找出规律,推断出所要填的数;3要善于从整体上把握数据之间的联系,从而很快找出规律;4数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。例1:找出下面数列的规律,并在括号里填上适当的数。1,4,7,10,( ),16,19分析:相邻的两个数的差都是3,所以:应填:10+3=13或163=13像上面按照一定的顺序排列的一串数叫做。试一试1:先找出下面数列
2、的规律,再填空。(1)33,28,23,( ),13,( ),3(2)2,6,18,( ),162,( )(3)128,64,32,( ),8,( ),2例2:找出下列数排列的规律,再填空。1,2,4,7,( ),16,22分析:前4个数每相邻的两个数的差递增1,即依次是1、2、3。应填的数为:7+4=11或16-5=11试一试2:先找出下面数列的规律,再填空。(1)1,4,9,16,25,( ),49,64(2)53,44,36,29,( ),18,( ),11,9,8例3:先找出规律,然后在括号里填上适当的数。23,4,20,6,17,8,( ),( ),11,12分析:第1、3、5个数递
3、减3;第2、4、6个数递增2。8后面的一个数为:17-3=14,11前面的数为:8+2=10。试一试3:先找出规律,然后在括号里填上适当的数。(1)13,2,15,4,17,6,( ),( )(2)4,28,6,26,9,23,( ),( ),18,14例4:在数列1,1,2,3,5,8,13,( ),34,55中,括号里应填什么数?分析:从第三个数开始,每个数等于它前面两个数的和。括号里:8+13=21或3413=21上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”。试一试4:先找出规律,然后在括号里填上适当的数。(1)2,2,4,6,10,16,( ),( )(2)
4、34,21,13,8,5,( ),2,( )(3)1,3,6,8,16,18,( ),( ),76,78例5:下面每个括号里的两个数都是按一定的规律组合的,在里填上适当的数。(8,4) (5,7) (10,2) (,9)分析:每个括号里的两个数的和都是12。应为:129=3试一试5:下面括号里的两个数是按一定的规律组合的,在里填上适当的数。(1)(1,24)(2,12)(3,8)(4,)(2)(18,17)(14,10)(10,1)(,5)(3)(2,3)(5,7)(7,10)(10,)专题二 找 规 律(二)专题简析:对于较复杂的按规律填数的问题,从以下几个方面来思考:1,对于几列数组成的一
5、组数变化规律,没有一成不变的方法,一种方法不行,就要及时调整思路,换一种方法再分析; 2,分布在图中的数,变化规律与数在图形中的特殊位置有关,是解题的突破口。例1:根据下表中的排列规律,在空格里填上适当的数。分析:经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。试一试1:找规律,在空格里填上适当的数。例2:根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?分析:前面两个圈中三个数之间有这样的关系:51210=6 42010=8第三个圈中右下角应填:83010=24试一试2:根据前
6、面图形中数之间的关系,想一想第三个图形的空格里应填什么数。例3:根据第1个算式直接写出后几个算式的结果。123456799=111111111 1234567918=1234567954= 1234567981=分析:几个算式第1个因数相同。第二个因数成倍数关系:18=92 54=96 81=99所以:1234567918=1234567992=2222222221234567954=1234567996=6666666661234567981=1234567999=999999999试一试3:找规律,写得数。11=1 1111=121 111111= 111111111111111111=专
7、题三 简单推理专题简析:解答推理问题,要从许多条件中找出关键条件作为推理的突破口。推理要有条理地进行,要充分利用已经得出的结论,作为进一步推理的依据。例1:根据下面两个算式,求与各代表多少? =2 =56 分析:由可知,=2;将中的都换成,那么5个=5622,=12,再由可知,=122=10试一试1:根据下面两个算式求与各代表多少? =8=20例2:甲、乙、丙三人分别是一小、二小和三小的学生,在区运动会上他们分别获得跳高、跳远和垒球冠军。已知:二小的是跳远冠军;一小的不是垒球冠军,甲不是跳高冠军;乙既不是二小的也不是跳高冠军。问:他们三个人分别是哪个学校的?获得哪项冠军?分析:由“二小的是跳远
8、冠军”可知垒球、跳高冠军是一小或三小的;因为“一小的不是垒球冠军”,所以一小一定是跳高冠军,三小的是垒球冠军;由“甲不是跳远冠军”,“乙既不是二小的也不是跳高冠军”可知,一小的甲是跳高冠军,二小的丙是跳远冠军,三小的乙是垒球冠军。试一试2:有三个女孩穿着崭新的连衣裙去参加游园会。一个穿花的,一个穿白的,一个穿红的。但不知哪一个姓王、哪一个姓李、哪一个姓刘。只知道姓刘的不喜欢穿红的,姓王的既不是穿红裙子,也不是穿花裙子。你能猜出这三个女孩各姓什么吗?专题四 应用题(一)专题简析:解答应用题时,通过对条件进行比较、转化、重新组合等多种手段,找到解题的突破口,从而使问题得以顺利解决。例1:某玩具厂把
9、630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多。每个塑料箱和纸箱各装多少件玩具?分析:如果玩具全部装在塑料箱或全部装在纸箱里,那么可以求出一个纸箱或一个塑料箱装多少件。因为3个纸箱与一个塑料箱装的同样多,所以6个纸箱与2个塑料箱装的同样多。这样,5个塑料箱装的玩具件数和7个塑料箱装的就同样多。可求出一个塑料箱装多少件。试一试1:王叔叔买了3千克荔枝和4千克桂圆,共付款156元。已知5千克荔枝的价钱等于2千克桂圆的价钱。每千克荔枝和每千克桂圆各多少元?例2:一个木器厂要生产一批课桌。原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生
10、产多少张课桌?分析:“提前1天完成任务”,这一天的60张要平均分到前面的几天去做。实际比原计划每天多生产4张,所以实际生产的天数是604=15天,原计划生产的天数是151=16天。所以原计划要生产6016=960张。试一试2:小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前2天看完。这本故事书有多少页?专题五 算式谜(一)专题简析:解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。例1:将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。分析:用七个数字组成五个数(3
11、个是一位数,2是两位数)。而方格中的数和被除数是两位数,其他是一位数。 0和1不能作因数,也不能做除数。由于26=12(2将出现两次),25=10(不合题意),24=8(数字中没有8),23=6(不是两位数)。因此,0、1、2只能用来组成两位数。经试验可得:34=12=605试一试1:将0、1、3、5、6、8、9这七个数字填在圆圈和方筐里,每个数字恰好出现一次组成一个整数算式。例2:把“、”分别放在适当的圆圈中(运算符号只能用一次),并在方框中填上适当的数,使下面的两个等式成立。36015=15 2135=分析:先从第一个等式入手,等式右边是15,与等式左边最后一个数15相同,因为0+15=1
12、5,所以,只要使36与0的运算结果为0就行。显然,360+15=15因为“”、“+”已用,第二个等式中只有“”、“”可以填。“方框中填整数”,而3不能被5整除:2135=2试一试2:将1 9这九个数字填入中(每个数字只能用一次),组成三个等式。专题六 算式谜(二):专题简析:1利用列举和筛选相结合的方法,逐步排除不合理的数字;2算式谜解出后,要验算一遍。例1:在下面的方框中填上合适的数字。分析:由积的末尾是0,推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为310,可推出第二个因数的十数上是8。题
13、中别的数字就容易填了。试一试1:在里填上适当的数。例2:在下面方框中填上适合的数字。分析:由“12”和“1”可知商和除数的十位都是1。那么被除数的十位只可能是7、8、9。如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。完整的竖式是:试一试2:在内填入适当的数字,使右面除法竖式成立。例3:下面算式中的a、b、c、d这四个字母各代表什么数字?分析:因为四位数abcd乘9的积是四位数,可知a=1、d=9;因为9与b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。试一
14、试3:右式中每个汉字所代表的数字。华= 罗= 庚= 金= 杯=例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“、”两种运算符号,使其结果等于100(数字的顺序不能改变)。分析:先凑出与100比较接近的数,再根据需要把相邻的几个数组成一个数。(1)123与100比较接近,前三个数字组成123,后面的数字凑出23就行。因为45与67相差22,8与9相差1,所以:123456789=100(2)89与100比较接近,78与67正好相差11,所此可得另一种解法:123456789=100试一试4:一个乘号和七个加号添在下面的算式中合适的地方,使其结果等于100(数字的顺序不能改变)。 1
15、 2 3 4 5 6 7 8 9 = 100专题七 巧妙求和(一)专题简析:若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差。通项公式:第n项=首项+(项数1)公差项数公式:项数=(末项首项)公差1例1:有一个数列:4,10,16,22,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。项数=(524)61=9答:这个数列共有9项。试一试1:有一个等差数列:2,5,8,11,101,这个等差数
16、列共有多少项?例2:有一等差数列:3,7,11,15,这个等差数列的第100项是多少?分析:这个等差数列的首项是3,公差是4,项数是100。要求第100项,可根据“末项=首项+公差(项数1)”进行计算。第100项=3+4(1001)=399试一试2:求1,4,7,10这个等差数列的第30项。例3:有这样一个数列:1,2,3,4,99,100。请求出这个数列所有项的和。分析:等差数列总和=(首项+末项)项数21+2+3+99+100=(1+100)1002=5050试一试3:6+7+8+74+75例4:求等差数列2,4,6,48,50的和。分析:项数=(末项首项)公差+1=(502)2+1=25
17、首项=2,末项=50,项数=25等差数列的和=(2+50)252=650试一试4:9+18+27+36+261+270专题八 最优化问题专题简析:做一件事情,合理安排用的时间最少,效果最佳,这类问题称为统筹问题。“费用最省”、“面积最大”、“损耗最小”等等问题,这些问题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值问题。以上的问题实际上都是“最优化问题”。例题1 贴烧饼的时候,第一面需要烘3分钟,第二面需要烘2分钟,而贴烧饼的架子上一次最多只能放2个烧饼。要贴3个烧饼至少需要几分钟?思路:锅中保持两张饼用时最少。(1)1号饼正面、2号饼正面3分钟(2)1号饼反面、3号饼正面
18、2分钟(3)2号饼反面、3号饼正面1分钟(4)2号饼反面、3号饼反面1分钟(5)3号饼反面1分钟。32111=8分钟试一试1 红太狼用一个平底锅烙饼,锅上只能同时放两个饼。烙第一面需要2分钟,烙第二面需要1分钟。现在在烙三个饼,最少需要多少分钟?例题2 在一条公路上每隔50千米有一个粮库,共4个粮库。甲粮库存有10吨粮食,乙粮库存有20吨粮食,丁粮库存有50吨粮食,还有一个粮库是空的。现在想把所存的粮食集中放在一个粮库中,如果每吨粮食运1千米要1元的运费,那么最少要花多少运费才行?思路:移动的货物重量小路程近,花费的费用就少。在本题中,各粮库之间的距离相等都是50千米,一般原则是“少往多处靠”
19、。甲、乙两仓库粮食合起来是30吨,还不如丁粮库的粮食多,所以应将甲、乙粮库的粮食集中放在丁粮库。甲粮库需用110503=1500元,乙粮库需要1205020=2000元,共用15002000=3500元。试一试2:一条公路有四个储油站,它们之间都相隔100千米。甲储油站有50吨油,乙储油站储有10吨油,丙储油站有20吨油,丁储油站是空的。现在如果想把所存的油集中于一个储油站,每吨油运1千米要2元运费,那么最少要花多少运费?例3:五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三
20、位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?分析:校医应该给治疗时间最短的先治病,治疗时间长的最后治疗,才能使三位同学在卫生室的时间总和最短。李佳治病3人等:13=3分钟;孙勇治病2人等:32=6分钟;,赵明治病自己1人等:51=5分钟。时间总和是133251=14分钟。:试一试3:甲、乙、丙、丁四人同时到一水龙头处用水,甲洗托把需要3分钟,乙洗抹布需要2分钟,丙洗衣服需要10分钟,丁用桶注水需要1分钟。怎样安排四人用水的次序,使他们所花的总时间最少?最少时间是多少?例4:用18厘米长的铁丝围成各种长方形,要求长和宽的长度都是整厘米数。围成的长方形的面积最大是多少?分析:根据“长
21、方形周长=(长宽)2”,得到长宽=182=9cm。根据“两数和一定,差越小积越大”,又已知长和宽的长度都是整厘米数,因此,当长是5cm,宽是4cm时,围成的长方形的面积最大:54=20平方厘米。试一试4:一个长方形的周长是20分米,它的面积最大是多少?例5:用3 6这四个数字分别组成两个两位数,使这两个两位数的乘积最大。分析:考虑两点:(1)把大数放在高位;即应把6和5这两个数字放在十位。(2)“两个因数的差越小,积越大”的规律,3应放在6的后面,4应放在5的后面。6354=3402试一试5:用5 8这四个数字分别组成两个两位数,使这两个两位数的乘积最大。专题九 规律(一)专题简析:在进行加、
22、减、乘、除四则运算是时一个数不变,另一个数发生改变,结果也会发生相应变化,抓住变化规律解题,会让我们的计算更轻松。例1:两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?分析:一个加数增加9,假如另一个加数不变,和就增加9;一个加数不变,另一个加数减少9,和就减少9。相当于和先增加9,又减少9,所以和不发生变化。试一试1:两个数相加,一个数减6,另一个数减2,和起什么变化?例2:两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?分析:一个加数增加10,和就增加10。现在“要使和增加6”,另一个加数应减少106=4。试一试2:两个数相加,如果一个加数增加8,
23、要使和减少15,另一个加数应有什么变化?例3:两数相减,如果被减数增加8,减数也增加8,差是否起变化?分析:被减数增加8,差就增加8;减数增加8,差就减少8。差先增加8,接着又减少8,所以不发生变化。试一试3:两数相减,被减数增加12,减数减少12,差起什么变化?例4:两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?分析:一个因数扩大8倍,积将扩大8倍;另一个因数缩小2倍,积将缩小2倍。积先扩大8倍又缩小2倍,因此,积扩大:82=4倍。试一试4:两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?例5:两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变
24、化?分析:被除数扩大4倍,商就扩大4倍;除数缩小2倍,商就扩大2倍。商先扩大4倍,接着又扩大2倍,商将扩大42=8倍。试一试5:两数相除,被除数缩小12倍,除数缩小2倍,商将怎样变化?专题十 变化规律(二)专题简析:前面,我们学习了和、差、积、商的变化规律。现在,我们利用这些规律来解决一些较简单的问题。例1:两数相减,被减数减少8,要使差减少12,减数应有什么变化?分析:被减数减少8,假如减数不变,差也减少8;现在要使差减少12,减数应增加128=4。试一试1:两数相减,如果被减数增加6,要使差增加15,减数应有什么变化?例2:两个数相除,商是8,余数是20,如果被除数和除数同时扩大10倍,商
25、是多少?余数是多少?分析:两数相除,被除数和除数同时扩大相同的倍数,商不变,余数扩大相同的倍数。所以商是8,余数是2010=200。试一试2:两个数相除,商是8,余数是600。如果被除数和除数同时缩小100倍,商是多少?余数是多少?例3:两数相乘,积是48。如果一个因数扩大2倍,另一个因数缩小3倍,那么积是多少?分析:一个因数扩大2倍,积扩大2倍;另一个因数缩小3倍,积缩小3倍。所以最后的积是4823=32。试一试3:两数相除,商是19。如果被除数扩大20倍,除数缩小4倍,那么商是多少?专题十一 错中求解专题简析:在加、减、乘、除式的计算中,如果粗心大意将算式中的一些运算数或符号抄错,就会导致
26、计算结果发生错误。现在我们就来讨论怎样利用错误的答案求出正确的结论。例1:小玲在计算除法时,把除数65写成56,结果得到的商是13,还余52。正确的商是多少?分析:要求出正确的商,必须先求出被除数是多少。先抓住错误的得数,求出被除数:135652=780。所以,正确的商是:78065=12。试一试1:小虎在计算除法时,把被除数1250写成1205,结果得到的商是48,余数是5。正确的商应该是多少?例2:小芳在计算除法时,把除数32错写成320,结果得到商是48。正确的商应该是多少?分析:根据题意,把除数32改成320扩大到原来的10倍,又因为被除数不变,根据商的变化规律,正确的商应该是错误商的
27、10倍。所以正确的商应该是4810=480。试一试2:小马在计算除法时,把被除数1280误写成12800,得到的商是32。正确的商应该是多少?例3:小冬在计算有余数的除法时,把被除数137错写成173,这样商比原来多了3,而余数正好相同。正确的商和余数是多少?分析:因为被除数137被错写成了173,被除数比原来多了173137=36,又因为商比原来多了3,而且余数相同,所以除数是363=12。又由13712=115,所以余数是5。试一试3:刘强在计算有余数的除法时,把被除数137错写成174,结果商比原来多3,余数比原来多1。求这道除法算式的除数和余数。例4:小龙在做两位数乘两位数的题时,把一
28、个因数的个位数字4错当作1,乘得的结果是525,实际应为600。这两个两位数各是多少?分析:一个因数的个位4错当作1,所得的结果比原来少了(41)个另一个因数;实际的结果与错误的结果相差600525=75,另一个因数=753=25一个因数=60025=24试一试4:小菊做两位数乘两位数的乘法时,把一个因数的个位数字1误写成7,结果得646,实际应为418。这两个两位数各是多少?例5:方方和圆圆做一道乘法式题,方方误将一个因数增加14,计算的积增加了84,圆圆误将另一个因数增加14,积增加了168。那么,正确的积应是多少?分析:由“一个因数增加14,计算结果增加了84”可知另一个因数是8414=
29、6;又由“另一个因数增加14,积增加了168”可知,这个因数是16814=12。所以正确的积应是126=72。试一试5:两个数相乘,如果一个因数增加3,另一个因数不变,那么积增加18;如果一个因数不变,另一个因数减少4,那么积减少200。原来的积是多少?专题十二 简单列举专题简析:直接列式解答比较困难时,可采用一一列举的方法解决。(根据题目的要求,通过一一列举各种情况最终达到解答整个问题的方法叫做列举法。)例题1 从南通到上海有两条路可走,从上海到南京有3条路可走。王叔叔从南通经过上海到南京去,有几种走法?分析:为了帮助理解,先画一个线路示意图。从南通到上海有两条路,每条路经上海到南京都有3条
30、路;即有2个3条路:32=6(种)试一试1:从甲地到乙地,有两条直达铁路,从乙地到丙地,有4条直达公路。那么,从甲地到丙地有多少种不同的走法?例2:有三张数字卡片,分别为3、6、0。从中挑出两张排成一个两位数,一共可以排成多少个两位数?分析:排成时要注意“0”不能排在最高位。十位上排6,个位有两种选择:60,63;十位上排3,个位有两种选择:30,60。一共可以排成22=4(个)两位数。试一试2:用8、6、3、0这四个数字,可以组成多少个不同的三位数?最大的一个是多少?例3:用红、黄、蓝三种信号灯组成一种信号,可以组成多少种不同的信号?分析: 要使信号不同,每一种信号颜色的顺序就不同。把这些不
31、同的信号一一列举如下:红灯排在第一位置时,有两种不同的信号,黄灯排在第一位置时,有两种不同的信号,蓝灯排在第一位置时,有两种不同的信号。因此,共有23=6种不同的排法。试一试3:小红有3种不同颜色的上衣,4种不同颜色的裙子,问她共有多少种不同的穿法?例4:在一次足球比赛中,4个队进行循环赛,需要比赛多少场?(两个队之间比赛一次称为1场)分析1:4个队进行循环赛,即每两个队都要赛一场。设4个队分别为A、B、C、D则:A队和其他3个队各比赛1次,要赛3场;B队和其他两个队还要各比赛1次,要赛2场;C队还要和D队比赛1次,要赛1场。这样,一共需要比赛321=6(场)。分析2:4个队进行循环赛,即每两
32、个队都要赛一场。则每个队都要赛3场,共赛43=12场。这样就重复算了两次,因此实际共赛:122=6(场)试一试4:在一次羽毛球赛中,8个队进行循环赛,需要比赛多少场?专题十三 和倍问题专题简析:已知两个数的和与它们之间的倍数关系,求这两个数是多少的应用题,叫做和倍问题。解答和倍应用题的基本数量关系是:和(倍数1)=小数 小数倍数=大数(和小数=大数)例1:学校有科技书和故事书共480本,科技书的本数是故事书的3倍。两种书各多少本?分析:为了便于理解题意,我们画图来分析把故事书的本数看作一份,科技书的本数就是这样的3份,两种书的总本数就是13=4份。把480本书平均分成4份,1份是故事书的本数,
33、3份是科技书的本数。故事书:480(13)=120(本) 科技书:1203=360(本)试一试1:一块长方形黑板的周长是96分米,长是宽的3倍。这块长方形黑板的长和宽各是多少分米?例2:果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。求梨树、桃树和苹果树各有多少棵?分析:如果把苹果树的棵数看作1份,三种树的总棵数是这样的1+3+4=8份。所以,苹果树:12008=150(棵)梨树:1503=450(棵)桃树:1504=600(棵)试一试2:李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。鸡、鸭、鹅各养了多少只?例3:有三
34、个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍。每个书橱里各放了多少本书?分析:把第一个书橱里的本数看作1份,第二个书橱里的本数是这样的2份,第三个就是这样的24=8份,三个书橱里的总本数就是这样的1+2+8=11份。所以,第一个书橱:33011=30(本)第二个书橱:302=60(本)第三个书橱:604=240(本)试一试3:甲、乙、丙三个修路队共修路1200米,甲队修的米数是乙队的2倍,乙队修的数数是丙队的3倍。三个队各修了多少米?例4:少先队员种柳树和杨树共216棵,杨树的棵数比柳树的3倍多20棵,两种树各种了多少棵?分析:如果杨树少种20棵,杨树
35、的棵数恰好是柳树的3倍。柳树1份和杨树3份的总棵数是21620=196(棵),柳树棵数:196(13)=49(棵)杨树棵数:21649=167(棵)试一试4:小华和小明两人参加数学竞赛,两人共得168分,小华的得分比小明的2倍少42分。两人各得多少分?例5:三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米。三个队各筑多少米?分析:把乙队的米数看作1份,甲队筑的米数是这样的2份。假设丙队多筑240米,那么三个队共筑了1360240=1600米,正好是乙队的211=4倍。所以,乙队筑了16004=400米,甲队筑了4002=800米,丙队筑了400240=160米。试一试
36、5:三个植树队共植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵。三个队各植树多少棵?第十四周 植树问题专题简析:1线段上的植树问题可以分为以下三种情形:(1)两端都要植树:棵数=段数1;(2)一端植树:棵数=段数;(3)两端都不植树:棵数=段数1。2在封闭的路线上植数:棵数=段数。例1:城中小学在一条大路边从头至尾栽树28棵,每隔6米栽一棵。这条路长多少米?分析: 28棵树之间有281=27段,每隔6米为一段,所以这条大路长627=162米。试一试1:一条路长200米,在路的一旁从头至尾每隔5米植一棵树,一共要植多少棵?例2:在一个周长是240米的游泳池周围栽树,每隔5米栽
37、一棵,一共要栽多少棵树?分析:游泳池是封闭线路,植树的棵数和段数相等。2405=48(棵)试一试2:在圆形的水池边,每隔3米种一棵树,共种树60棵,这个水池的周长是多少米?例3:在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等。求相邻两盏彩灯之间的距离。分析:大桥两边一共挂了202盏彩灯,每边各挂2022=101盏,101盏彩灯把800米长的大桥分成1011=100段,所以,相邻两盏彩灯之间的距离是800100=8米。试一试3:六年级学生参加广播操比赛,排了5路纵队,队伍长20米,前后两排相距1米。六年级有学生多少人?例4:一个木工锯一根19米的木料
38、,他先把一头损坏部分锯下来1米,然后锯了5次,锯成同样长的短木条。每根短木条长多少米?分析:把长191=18米的木条锯了5次,以锯成51=6段,每根短木条长186=3米。试一试4:有一个工人把长12米的圆钢锯成了3米长的小段,锯断一次要5分钟。共需要多少分钟?例5:有一幢10层的大楼,由于停电电梯停开。某人从1层走到3层需要30秒,照这样计算,他从3层走到10需要多少秒?分析:1层至3层有两个间隔,所以每个间隔用去的时间是30(31)=15秒,3层到10层经过了103=7个时间间隔,所以,他从3层到10层需要157=105秒。试一试5:时钟4点敲4下,6秒钟敲完。那么12点钟敲12下,多少秒钟
39、敲完?第十五周 图形问题专题简析:解答“图形面积”问题时,应注意以下几点:1、根据题意,画出图形。2、合理地进行切拼。3、掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。例1:人民路小学操场长90米,宽45米。改造后,长增加10米,宽增加5米。现在操场面积比原来增加了多少平方米?分析:用操场现在的面积减去操场原来的面积,就得到增加的面积。现在面积:(90+10)(45+5)=5000平方米原来面积:9045=4050平方米现在比原来增加:50004050=950平方米试一试1:一块长方形铁板,长18分米,宽13分米。如果长和宽各减少2分米,面积比原来减少多少平方分米?例2:一个
40、长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。这个长方形原来的面积是多少平方米?分析:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为546=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为363=12米。所以,这个长方形原来的面积是129=108平方米。试一试2:一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。这个长方形原来的面积是多少平方米?例3:一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场(如下图),求养鸡场的占地面积。
41、分析:因为一面利用着墙,所以两条长加一条宽等于16米。而宽是4米,那么长是(164)2=6米,占地面积是64=24平方米。试一试3:下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。例4:街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?分析:把水泥路分成四个同样大小的长方形(如下图)。因此,一个长方形的面积是124=3平方米。因为水泥路宽1米,所以小长方形的长是31=3米。从图中可以看出正方形小正方形的边长是31=2米。中间花坛的面积是22=4平方米。试一试4:有一个正方形的水池,如下图的阴影部分,在
42、它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。第十六周 巧妙求和(二)专题简析:某些问题,可以转化为求若干个数的和。先判断是否是求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完。这本书共有多少页?分析:根据“每天读的页数都比前一天多3页”可知他每天读的页数是按一定规律排列的数,即30、33、36、57、60。这列数是一个等差数列,首项=30,末项=60,项数=11带入等差数列求和公式,得:(3060)112=495(页)试一试1:丽丽学英语单
43、词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词?例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?分析:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29282721=(291)292=435(次)。试一试2:有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?例3:某班有51个同学,毕业时
44、每人都和其他的每个人握一次手。那么共握了多少次手?分析1:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:50494821=(501)502=1275(次)分析2:每个同学都要握手511=50次。而每两人就重复算了1次。所以实际握手次数:51502=1275(次)试一试3:学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。如果有21人参加比赛,一共要进行多少场比赛?专题十七 数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起
45、时就构成了复杂的几何图形。要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点: 1,弄清被数图形的特征和变化规律。2,要按一定的顺序数,做到不重复,不遗漏。例1:数一数下图中共有多少个三角形。分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个。所以图中共有62=12个三角形。试一试1:数一数下面各图中各有多少个三角形。( )个三角形 ( )个三角形例2:数一数下图中有多少个长方形。分析:数长方形与数线段的方法类似。可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形。试一试2:数一数下面各图中分别有多少个长方形。( )个长方形专题十八 数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成
限制150内