总结拉格朗日中值定理的应用(8页).doc
《总结拉格朗日中值定理的应用(8页).doc》由会员分享,可在线阅读,更多相关《总结拉格朗日中值定理的应用(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-总结拉格朗日中值定理的应用 总结拉格朗日中值定理的应用以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习
2、有着极大的意义!拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式,凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F(X),由此求出辅助函数F(x)如例1.常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 总结 拉格朗日 中值 定理 应用
限制150内