小学数学几何专题(奥数)一十归总(8页).doc
《小学数学几何专题(奥数)一十归总(8页).doc》由会员分享,可在线阅读,更多相关《小学数学几何专题(奥数)一十归总(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-小学数学几何专题(奥数)一十归总-第 8 页小学几何面积问题一姓名 DACBP图1ADCBPADCBP(适应长方形、正方形)引理:如图1在 ABCD中。P是AD上一点,连接PB,PC则SPBC=SABP+SpcD=S ABCDABCDMPN1已知:四边形ABCD为平行四边形,图中的阴影部份面积占平行四边形ABCD的面积的几分之几? 2. 已知: ABCD的面积为18,E是PC的中点,求图中的阴影部份面积ABCDEP BPACED3. 在 ABCD中,CD的延长线上的一点E,DC=2DE,连接BE交AC于P点,(如图)知SPDE=1, SABP=4,求:平行四边形ABCD的面积4.四边形ABC
2、D中,BF=EF=ED,(如图)A边形ABCD的对角线BD被E,F,G三点四等份,(如图)若四边形AECG=15 则S四边形ABCD = AB BBBBBA ED DDDDDA F (1) 若S四边形ABCD =15 则S阴 = CCCcccCA (2)若SAEF+ SBFC=15 则S四边形ABCD = (第一题图) (3)若SAEF= 3 SBFC=2 则S四边形ABCD = 5. 四边形ABCD的对角线BD被E,F,G三点四等份,(如图)若四边形AECG=15 则S四边形ABCD = 6.四边形ABCD的对角线BD被E,F,G三点四等份,(如图)若阴影部份面积为15D 则S四边形ABCD
3、 = B A DF E7.若ABCD为正方形,F是DC的中点,已知:SBFC= 1 (1)则S四边形ADFB = (2) SDFE=BC(3) SAEB=8.直角梯形ABCD中.AE=ED,BC=18,AD=8,CD=6,且BF=2FC,SGED=SGFC.求S阴= 小学几何面积问题二第1题第2题姓名 AEF= 2, AB=3AE CF=3EF 则SABC= 2. 如图SBDE=30 ,AB=2AE, DC=4AC 则SABC= 3.正方形ABCD中,E,F,G为BC边上四等份点, M,N,P为对角线AC上的四等份点(如图)B 若S正方形ABCD=32 则SNGP= 4.已知:SABC=30
4、D是BC的中点D AE=2ED 则SBDE= EAC FDCEA5. 已知:AD=DB DE=3EC AF=3FE 若SABC=160 求SEFC= B 6.已知:在ABC中,FC=3AF EC=2BE BD=DF 若SDFE=3 A 则SABC= FDECB7.ABCD为平行四边形,AG=GC,BE=EF=FC,若SGEF=2,则 S ABCD = DAGCBADOD 6FEB128.ABCD 是梯形,AD/ BC(如图) 则SAOB= SAOD= DA(第8题)48O9. ABCD 是梯形,AD/ BC(如图) 则SDOC= SBOC= BC(第9题)10.ABCD 是梯形,AD/ BC(
5、如图),且BO=3OD,DA SAOB=15 则S梯ABCD= OCB(第10题)11. 如图BD=DE, EC=3EF AF=2FD 若DFE的面积等于1 则ABC的面积为 FEDCBA(第11题)小学几何面积问题三姓名 1.在梯形ABCD中,AD/BC,图中阴影部分的面积为4,OC=2AO,求 S梯ABCD= 2在梯形ABCD中,AD/BC,SBOC=14 OC=2AO 求 S梯ABCD= 3. 在梯形ABCD中,AD/BC,SAOB=14 OC=3AO 求 S梯ABCD= 4.在梯形ABCD中,AD/BC,图中阴影部分的面积为30,OC=3AO,空SAOB=6求S空= L15.读一读:A
6、若直线L1/L2 (如图一)一当高不变,底扩大(或缩小)K倍。L2其面积也同时扩大(或缩小)K倍例:BC=2 AB=4 AB是BC扩大2倍而得 (图一) N 所以面积就是面积的2倍 (图二) AHA AH 2AM若直线L1/L2 (如图二)二当底不变,高扩大(或缩小)K倍。 AAAABC其面积也同时扩大(或缩小)K倍例:AC=BC H1=2H2 (图二) 那么:SNBC=2SMAC 练一练:1如图(一):L1/L2 AB=10 BC=5 若SHAB= 2.如图(二)ACM的AC边上的高H1是NCB的CB边上的高H2的一半,且AC=CB, 若SNBC=100 则SACM= 3.把下面的三角形分成
7、三个小三角形,使它们的面积的比为1:2:34.ABC是等边三角形,AD是BC边上的高,若SABC=2,则SADC= 5. ABC是等边三角形,D是AB的中点,且DH垂直于BC,H为垂足._H若SBDH=2,则SABC= 小学几何面积问题四姓名 ABC中,AE=BE,BD=2DC,FC=3AF 若ABC的面积为1,则SEFD= 2.ABC中,三边BC,CA,AB上分别有点D,E,F,且BC=3CD AB=2BE AC=4AF 若ABC的面积为240平方厘米,则SDEF 平方厘米.3. 如图BD=DE, EC=3EF AF=2FD 若DFE的面积等于1 则ABC的面积为 FEDCBA664.两个正
8、方形拼成如图,则阴影部分的面积为_。5.两个正方形拼成如图,则阴影部分的面积为_。646 46.三个正方形拼成如图,求阴影部分的面积为_。445457.如图ABCD是矩形,EFAB如果S矩形ABCD=24 则S阴= 8.在平行四边形ABCD中,EFAC,若 AED的面积为72平方厘米,则SDCF= 9.ABCD是平行四边形.直线CF与AB交于E,与DA的延长线交于F,连BF,若三角形BEF的面积等于4cm2,那么三角形EDA(阴影部分)的面积是 cm2小学几何面积问题五姓名 1.有两种自然放法,将正方形内接于等腰直角三角形.如果按左图的放法,那么可求得这个正方形面积为441. 如果按右图的放法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 几何 专题 归总
限制150内