《排列与组合的区别(3页).doc》由会员分享,可在线阅读,更多相关《排列与组合的区别(3页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-排列与元素的顺序有关,组合与顺序无关如231与213是两个排列,231的和与213的和是一个组合 (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有Nm1m2m3mn种不同方法 (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2m3mn种不同的方法 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的
2、方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来 (二)排列和排列数 (1)排列:从n个不同元素中,任取m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法 (2)排列数公式:从n个不同元素中取出m(mn)个元素的所有排列 当mn时,为全排列
3、Pnn=n(n1)(n1)321n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(mn)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合 (2)组合数:从n个不同元素中取出m(mn)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(mn)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的排列与组合的共同点是从n个不同的元素中,任取m(mn)个元素,而不同点是排列是按照一定的顺序
4、排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志下面通过实例来体会排列与组合的区别 【例题】 判断下列问题是排列问题还是组合问题?并计算出种数 (1) 高二年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手? (2) 高二数学课外活动小组共10人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选2名参加省数学竞赛,有多少种不同的选法? (3) 有2、3、5、7、11、13、17、19八个质数:从中任取两个数求它们的商,可以有多少个不同的商?从中任取两个求它的积,可以得到多少个不同的积? (4) 有8盆花:从
5、中选出2盆分别给甲、乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法? 【思考与分析】 (1) 由于每两人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关,是排列;由于每两人互握一次手,甲与乙握手、乙与甲握手是同一次握手,与顺序无关,所以是组合问题其他类似分析 解: (1) 是排列问题,共通了=110(封);是组合问题,共需握手=55(次) (2) 是排列问题,共有=109=90(种)不同的选法;是组合问题,共=45(种)不同的选法; (3) 是排列问题,共有=87=56(个)不同的商;是组合问题,共有=28(个)不同的积; (4) 是排列问题,共有=56(种)不同的选法;是组合问题,共有=28(种)不同的选法 排列组合中的有序和无序,指的是什么意思?比如说从100个球中任意取两个,这个就是无序,是组合数如果说从100个球中先后取两个,就有顺序了,是排列-第 2 页-
限制150内