带电粒子在磁场中运动的六类高考题(13页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《带电粒子在磁场中运动的六类高考题(13页).doc》由会员分享,可在线阅读,更多相关《带电粒子在磁场中运动的六类高考题(13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-带电粒子在磁场中运动的六类高考题一、带电粒子在匀强磁场中匀速圆周运动基本问题找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。(04天津)钍核发生衰变生成镭核并放出一个粒子。设该粒子的质量为、电荷量为q,它进入电势差为U的带窄缝的平行平板电极和间电场时,其速度为,经电场加速后,沿方向进入磁感应强度为B、方向垂直纸面向外的有界匀强磁场,垂直平板电极,当粒子从点离开磁
2、场时,其速度方向与方位的夹角,如图所示,整个装置处于真空中。(1)写出钍核衰变方程;(2)求粒子在磁场中沿圆弧运动的轨道半径R;(3)求粒子在磁场中运动所用时间。解析:(1)钍核衰变方程 (2)设粒子离开电场时速度为,对加速过程有粒子在磁场中有由、得 (3)粒子做圆周运动的回旋周期 粒子在磁场中运动时间 由、得 二、带电粒子在磁场中轨道半径变化问题导致轨道半径变化的原因有:带电粒子速度变化导致半径变化。如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。磁场变化导致半径变化。如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。动量变化导致半径变化。如粒
3、子裂变,或者与别的粒子碰撞;电量变化导致半径变化。如吸收电荷等。总之,由看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。(06年全国2)如图所示,在x0与x0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1B2。一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有r1 r2
4、分析粒子运动的轨迹。如图所示,在xy平面内,粒子先沿半径为r1的半圆C1运动至y轴上离O点距离为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的O1点,O1O距离d2(r2r1)此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减小d。设粒子经过n次回旋后与y轴交于On点。若OOn即nd满足 nd2r1 则粒子再经过半圆Cn+1就能够经过原点,式中n1,2,3,为回旋次数。由式解得由式可得B1、B2应满足的条件n1,2,3,三、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题带电粒子在磁场中运动的临界问题的原因有:粒
5、子运动范围的空间临界问题;磁场所占据范围的空间临界问题,运动电荷相遇的时空临界问题等。审题时应注意恰好,最大、最多、至少等关键字(07全国1)两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y0,0x0,xa的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值已知速度最大的粒子在0xa的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子
6、在磁感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。解析:粒子在磁感应强度为B的匀强磁场中运动半径为: 速度小的粒子将在xa的区域走完半圆,射到竖直屏上。半圆的直径在y轴上,半径的范围从0到a,屏上发亮的范围从0到2a。轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在D点相切(虚线),OD=2a,这是水平屏上发亮范围的左边界。速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C和,C在y轴上,有对称性可知在x=2a直线上。设t1为粒子在0xa的区域中运动的时间,由题意可知 由此解得: 由式和对称性可
7、得 所以 即弧长AP为1/4圆周。因此,圆心在x轴上。设速度为最大值粒子的轨道半径为R,有直角可得 由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标 四、带电粒子在有界磁场中的极值问题寻找产生极值的条件:直径是圆的最大弦;同一圆中大弦对应大的圆心角;由轨迹确定半径的极值。有一粒子源置于一平面直角坐标原点O处,如图所示相同的速率v0向第一象限平面内的不同方向发射电子,已知电子质量为m,电量为e。欲使这些电子穿过垂直于纸面、磁感应强度为B的匀强磁场后,都能平行于x轴沿+x方向运动,求该磁场方向和磁场区域的最小面积s。解析:由于电子在磁场中作匀速圆周运动的半径Rmv0/Be是确定的,设磁
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 磁场 运动 六类高 考题 13
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内