数列经典例题(12页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数列经典例题(12页).doc》由会员分享,可在线阅读,更多相关《数列经典例题(12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-类型一:迭加法求数列通项公式1在数列中,求.解析:,当时, ,将上面个式子相加得到:(),当时,符合上式故.总结升华:1. 在数列中,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列.2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得.举一反三:【变式1】已知数列,求.【答案】【变式2】数列中,求通项公式.【答案】.类型二:迭乘法求数列通项公式2设是首项为1的正项数列,且,求它的通项公式.解析:由题意, ,又,当时,当时,符合上式.总结升华:1. 在数列中,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列
2、.2若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得.举一反三:【变式1】在数列中,求.【答案】【变式2】已知数列中,求通项公式.【答案】由得, , , 当时, 当时,符合上式类型三:倒数法求通项公式3数列中,,,求.思路点拨:对两边同除以得即可.解析:,两边同除以得,成等差数列,公差为d=5,首项,.总结升华:1两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项.2若数列有形如的关系,则可在等式两边同乘以,先求出,再求得.举一反三:【变式1】数列中,求.【答案
3、】【变式2】数列中,,,求.【答案】.类型四:待定系数法求通项公式4已知数列中,求.法一:设,解得即原式化为设,则数列为等比数列,且法二: 由得:设,则数列为等比数列法三:,总结升华:1一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.2若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.举一反三:【变式1】已知数列中,求【答案】令,则,即,为等比数列,且首项为,公比,故.【变式2】已知数列满足,而且,求这个数列的通项公式.【答案】,设,则,即,数列是以为
4、首项,3为公比的等比数列,. .类型五:和的递推关系的应用5已知数列中,是它的前n项和,并且, .(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.解析:(1)因为,所以 以上两式等号两边分别相减,得 即,变形得 因为 ,所以 由此可知,数列是公比为2的等比数列. 由, 所以, 所以, 所以.(2) ,所以 将 代入得 由此可知,数列是公差为的等差数列,它的首项, 故.(3),所以 当n2时, 由于也适合此公式, 故所求的前n项和公式是.总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 经典 例题 12
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内