带电粒子在复合场中的运动典型例题汇编(19页).doc
《带电粒子在复合场中的运动典型例题汇编(19页).doc》由会员分享,可在线阅读,更多相关《带电粒子在复合场中的运动典型例题汇编(19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-带电粒子在复合场中的运动典型例题汇编-第 19 页专题八带电粒子在复合场中的运动考纲解读 、磁流体发电机、质谱仪等磁场的实际应用问题1 带电粒子在复合场中的直线运动某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是()A小球一定带正电 B小球可能做匀速直线运动C带电小球一定做匀加速直线运动; D运动过程中,小球的机械能增大 ; 图12 带电粒子在复合场中的匀速圆周运动如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是 (
2、)A小球一定带正电 B小球一定带负电;C小球的绕行方向为顺时针 ; D改变小球的速度大小,小球将不做圆周运动 图2考点梳理一、复合场1 复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现2 三种场的比较项目名称力的特点功和能的特点重力场大小:Gmg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:FqE相同相反电场力做功与路径无关WqU电场力做功改变电势能磁场洛伦兹力FqvB方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1 静止
3、或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动2 匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动3 较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线4 分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成3 质谱仪原理的理解如图3所示是质谱仪的工作原理示意图带电粒子被加速电场加速后,进入速度选择器速度选择器内相互正
4、交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场下列表述正确的是 ()A质谱仪是分析同位素的重要工具 ; B速度选择器中的磁场方向垂直纸面向外;C能通过狭缝P的带电粒子的速率等于E/BD粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小 ; 图34 回旋加速器原理的理解劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量
5、为q,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响则下列说法正确的是 () A质子被加速后的最大速度不可能超过2Rf ;B质子离开回旋加速器时的最大动能与加速电压U成正比C质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为1 ;D不改变磁感应强度B和交流电频率f,该回旋加速器的最大动能不变 图4 规律总结带电粒子在复合场中运动的应用实例1 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qUmv2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvBm.由两式
6、可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷r ,m,.2 回旋加速器(1)构造:如图6所示,D1、D2是半圆形金属盒,D形盒的缝隙处接交流电源,D形盒处于匀强磁场中(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速由qvB,得 Ekm,可见粒子获得的最大动能由磁感应强度B和D形盒 图6 半径r决定,与加速电压无关(特别提醒这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动)的原理)3 速度选择器(如图7所示) (1)平行板中电场强度E和磁感应强度B互相垂直这种装置
7、能把具有一定速度的粒子选择出来,所以叫做速度选择器(2)带电粒子能够沿直线匀速通过速度选择器的条件是qEqvB,即v. 图74 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能(2)根据左手定则,如图8中的B是发电机正极(3)磁流体发电机两极板间的距离为L,等离子体速度为v,磁场的磁感应强度为B,则由qEqqvB得两极板间能达到的最大电势差UBLv. 图8 5 电磁流量计工作原理:如图9所示,圆形导管直径为d,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛
8、伦兹力平衡时,a、b间的电势差就 保持稳定,即:qvBqEq,所以v,因此液体流量QSv. 图9考点一带电粒子在叠加场中的运动1 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存若重力和洛伦兹力平衡,则带电体做匀速直线运动若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题(2)电场力、磁场力并存(不计重力的微观粒子)若电场力和洛伦兹力平衡,则带电体做匀速直线运动若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题(3)电场力、磁场力、重力并存若三力平衡,一定做匀速直线运动若重力与电场力平衡
9、,一定做匀速圆周运动若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题2 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果例1如图10所示,带电平行金属板相距为2R,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板及左侧边缘线相切一个带正电的粒子(不计重力)沿两板间中心线O1O2从左侧边缘O1点以某一速度射入,恰沿直线通过圆形
10、磁场区域,并从极板边缘飞出,在极板间运动时间为t0.若撤去磁场,质子仍从O1点以相同速度射入,则经时间打到极板上 图10(1)求两极板间电压U;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O1O2从O1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析(1)设粒子从左侧O1点射入的速度为v0,极板长为L,粒子在初速度方向上做匀速直线运动L(L2R)t0,解得L4R粒子在电场中做类平抛运动:L2Rv0aRa()2在复合场中做匀速运动:qqv0B联立各式解得v0,U(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r,粒子恰好从上极板左边缘飞出时速度的偏转角为,由几
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 复合 中的 运动 典型 例题 汇编 19
限制150内