数值分析第四章数值积分与数值微分习题答案(16页).doc
《数值分析第四章数值积分与数值微分习题答案(16页).doc》由会员分享,可在线阅读,更多相关《数值分析第四章数值积分与数值微分习题答案(16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。(1)若令,则令,则令,则从而解得令,则故成立。令,则故此时,故具有3次代数精度。(2)若令,则令,则令,则从而解得令,则故成立。令,则故此时,因此,具有3次代数精度。(3)若令,则令,则令,则从而解得或令,则故不成立。因此,原求积公式具有2次代数精度。(4)若令,则令,则令,则故有令,则令,则故此时,因此,具有3次代数精
2、度。2.分别用梯形公式和辛普森公式计算下列积分:解:复化梯形公式为复化辛普森公式为复化梯形公式为复化辛普森公式为复化梯形公式为复化辛普森公式为复化梯形公式为复化辛普森公式为3。直接验证柯特斯教材公式(2。4)具有5交代数精度。证明:柯特斯公式为令,则令,则令,则令,则令,则令,则令,则因此,该柯特斯公式具有5次代数精度。4。用辛普森公式求积分并估计误差。解:辛普森公式为此时,从而有误差为5。推导下列三种矩形求积公式:证明:两边同时在上积分,得即两边同时在上积分,得即两连边同时在上积分,得即6。若用复化梯形公式计算积分,问区间应人多少等分才能使截断误差不超过?若改用复化辛普森公式,要达到同样精度
3、区间应分多少等分?解:采用复化梯形公式时,余项为又故若,则当对区间进行等分时,故有因此,将区间213等分时可以满足误差要求采用复化辛普森公式时,余项为又若,则当对区间进行等分时故有因此,将区间8等分时可以满足误差要求。7。如果,证明用梯形公式计算积分所得结果比准确值大,并说明其几何意义。解:采用梯形公式计算积分时,余项为又且又即计算值比准确值大。其几何意义为,为下凸函数,梯形面积大于曲边梯形面积。8。用龙贝格求积方法计算下列积分,使误差不超过.解:00.771743310.72806990.713512120.71698280.71328700.713272030.71420020.71327
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 第四 积分 微分 习题 答案 16
限制150内