数列证明题型总结(教师版)附答案(61页).doc
《数列证明题型总结(教师版)附答案(61页).doc》由会员分享,可在线阅读,更多相关《数列证明题型总结(教师版)附答案(61页).doc(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数列证明题型总结(考试时间:_ 总分:_)出卷人:_ 内测人:_ 班号:_ 姓名:_成绩:_一、解答题 :1在数列中,a11,an12an2n.()设bn,证明:数列是等差数列;()求数列的前n项的和Sn.【答案】()因为bn1bn1所以数列bn为等差数列()因为bnb1(n1)1n所以ann2n1所以Sn120221n2n12Sn121222n2n两式相减得Sn(n1)2n12在数列an中,a1,an1an.()设bn2nan,证明:数列bn是等差数列;()求数列an的前n项和Sn.【答案】()由an1an,得2n1an12nan1bn1bn1,则bn是首项b11,公差为1的等差数列故bn
2、n,an.()Sn123(n1)nSn123(n1)n两式相减,得:Sn1Sn23数列an的各项均为正数,前n项和为Sn,且满足4Sn(an1)2(nN*)()证明:数列an是等差数列,并求出其通项公式an;()设bnan2an(nN*),求数列bn的前n项和Tn.【答案】()n1时,4a1(a11)2a2a110,即a11n2时,4an4Sn4Sn1(an1)2(an11)2aa2an2an1aa2an2an10(anan1)(anan1)20an0anan12故数列an是首项为a11,公差为d2的等差数列,且an2n1(nN*)()由()知bnan2an(2n1)22n1Tnb1b2bn(
3、121)(323)(2n1)22n113(2n1)(212322n1)n2n24数列an的各项均为正数,前n项和为Sn,且满足2an1(nN*)()证明:数列an是等差数列,并求出其通项公式an;()设bnan2n(nN*),求数列bn的前n项和Tn.【答案】()由2an1(nN*)可以得到4Sn(an1)2(nN*) n1时,4a1(a11)2a2a110,即a11n2时,4an4Sn4Sn1(an1)2(an11)2aa2an2an1aa2an2an10(anan1)(anan1)20an0anan12故数列an是首项为a11,公差为d2的等差数列,且an2n1(nN*)()由()知bna
4、n2n(2n1)2nTn(121)(322)(2n3)2n1(2n1)2n则2Tn(122)(323)(2n3)2n(2n1)2n1两式相减得:Tn(121)(222)(22n)(2n1)2n122(2n1)2n1(32n)2n16Tn(2n3)2n16(或Tn(4n6)2n6)5已知数列an,其前n项和为Snn2n(nN*)()求a1,a2;()求数列an的通项公式,并证明数列an是等差数列;()如果数列bn满足anlog2bn,请证明数列bn是等比数列,并求其前n项和Tn.【答案】()a1S15,a1a2S222213,解得a28.()当n2时,anSnSn1n2(n1)2n(n1)(2n
5、1)3n2.又a15满足an3n2,an3n2(nN*)anan13n23(n1)23(n2,nN*),数列an是以5为首项,3为公差的等差数列()由已知得bn2an(nN*),2an1an238(nN*),又b12a132,数列bn是以32为首项,8为公比的等比数列Tn(8n1)6已知函数f(x),数列an满足:a1,an1f(an)()求证:数列为等差数列,并求数列an的通项公式;()记Sna1a2a2a3anan1,求证:Sn.【答案】证明:()an1f(an),即,则成等差数列,所以(n1)(n1),则an.()anan18,Sna1a2a2a3anan188.7已知数列an的前三项依
6、次为2,8,24,且an2an1是等比数列()证明是等差数列;()试求数列an的前n项和Sn的公式【答案】()a22a14,a32a28,an2an1是以2为公比的等比数列an2an142n22n.等式两边同除以2n,得1,是等差数列()根据()可知(n1)1n,ann2n.Sn12222323n2n,2Sn122223(n1)2nn2n1.得:Sn222232nn2n1n2n12n12n2n1,Sn(n1)2n12.8已知数列an的各项为正数,前n项和为Sn,且满足:Sn(nN*)()证明:数列S是等差数列;()设TnSSSS,求Tn.【答案】()证明:当n1时,a1S1,又Sn(nN*),
7、S1,解得S11.当n2时,anSnSn1,Sn,即SnSn1,化简得SS1,S是以S1为首项,1为公差的等差数列()由()知Sn,TnSSS,即Tn12(n1)n.得Tn1(n1)n.得Tnnn1n1,Tn2.9数列an满足a11,an11(nN*),记Snaaa.()证明:是等差数列;()对任意的nN*,如果S2n1Sn恒成立,求正整数m的最小值【答案】()证明:4(n1)44n3,即是等差数列()令g(n)S2n1Sn.g(n1)g(n)0,g(n)在nN*上单调递减,g(n)maxg(1).恒成立m,又mN,正整数m的最小值为10.10已知数列an是首项a1,公比为的等比数列,设bn1
8、5log3ant,常数tN*.()求证:bn为等差数列;()设数列cn满足cnanbn,是否存在正整数k,使ck1,ck,ck2成等比数列?若存在,求k,t的值;若不存在,请说明理由【答案】()证明:an3,bn1bn15log35,bn是首项为b1t5,公差为5的等差数列()cn(5nt)3,令5ntx,则cnx,cn1(x5)3,cn2(x10)3,若ccn1cn2,则(x3)2(x5)3(x10)3,化简得2x215x500,解得x10或(舍),进而求得n1,t5,综上,存在n1,t5适合题意11在数列 an中,a11,an12an2n1.()设bnan1an2,(nN*),证明:数列b
9、n是等比数列;()求数列an的通项an.【答案】()由已知an12an2n1得an22an12n3,得an2an12an12an2设an2an1c2(an1anc)展开与上式对比,得c2因此,有an2an122(an1an2)由bnan1an2,得bn12bn,由a11,a22a135,得b1a2a126,故数列bn是首项为6,公比为2的等比数列()由()知,bn62n132n则an1anbn232n2,所以ana1(a2a1)(a3a2)(anan1)1(3212)(3222)(32n12)13(222232n1)2(n1)an32n2n3,当n1时,a1321213651,故a1也满足上式
10、故数列an的通项为an32n2n3(nN*)12在数列an中,a1,anan1(nN*且n2)()证明:an是等比数列;()求数列an的通项公式;()设Sn为数列的前n项和,求证Sn.【答案】()由已知,得是等比数列()设Anan,则A1a11,且q则An()n,an,可得an()Sn()()()13已知数列an满足a12,an12ann1(nN*)()证明:数列ann是等比数列,并求出数列an的通项公式;()数列bn满足:bn(nN*),求数列bn的前n项和Sn.【答案】()证法一:由an12ann1可得an1(n1)2(ann),又a12,则a111,数列ann是以a111为首项,且公比为
11、2的等比数列,则ann12n1,an2n1n.证法二:2,又a12,则a111,数列ann是以a111为首项,且公比为2的等比数列,则ann12n1,an2n1n.()bn,bnSnb1b2bn2()2n()nSn()22()3(n1)()nn()n1由,得Sn()2()3()nn()n1n()n11(n2)()n1,Sn2(n2)()n.14在数列an中,a11,2nan1(n1)an,nN*.()设 bn,证明:数列bn是等比数列;()求数列an的前n项和Sn.【答案】()因为,所以bn是首项为1,公比为的等比数列()由()可知,即an,Sn1,上式两边乘以,得Sn,两式相减,得Sn1,S
12、n2,所以Sn415设数列an的前n项和为Sn,且Sn(1)an,其中1,0.()证明:数列an是等比数列;()设数列an的公比qf(),数列bn满足b1,bnf(bn1)(nN*,n2),求数列bn的通项公式【答案】()由Sn(1)anSn1(1)an1(n2),相减得:ananan1,(n2),数列an是等比数列()f(),bn1,是首项为2,公差为1的等差数列;2(n1)n1,bn.16在等差数列an中,a1030,a2050.()求数列an的通项an;()令bn2an10,证明:数列bn为等比数列;()求数列nbn的前n项和Tn.【答案】()由ana1(n1)d,a1030,a2050
13、,得方程组,解得a112,d2.an12(n1)22n10.()由()得bn2an1022n101022n4n,4bn是首项是4,公比q4的等比数列()由nbnn4n得:Tn14242n4n4Tn142(n1)4nn4n1相减可得:3Tn4424nn4n1n4n1Tn17已知an是等差数列,其前n项和为Sn,已知a311,S9153,()求数列an的通项公式;()设anlog2bn,证明bn是等比数列,并求其前n项和Tn.【答案】() 解得:d3,a15, an3n2 ()bn2an,2an1an238,bn是公比为8的等比数列又b12a132, Tn(8n1)18在数列an中,a13,an2
14、an1n2(n2,且nN*)()求a2,a3的值;()证明:数列ann是等比数列,并求an的通项公式;()求数列an的前n项和Sn.【答案】()a13,an2an1n2(n2,且nN*),a22a1226,a32a23213.()证明:2,数列ann是首项为a114,公比为2的等比数列ann42n12n1,即an2n1n,an的通项公式为an2n1n(nN*)()an的通项公式为an2n1n(nN*),Sn(2223242n1)(123n)2n2.19已知数列an满足a12,an13an2(nN*)()求证:数列an1是等比数列;()求数列an的通项公式【答案】()证明:由an13an2得an
15、113(an1),从而3,即数列an1是首项为3,公比为3的等比数列()由()知,an133n13nan3n1.20已知数列an满足a12,an14an2n1,Sn为an的前n项和()设bnan2n,证明数列bn是等比数列,并求数列an的通项公式;()设Tn,n1,2,3,证明:i.【答案】()因为bn1an12n1(4an2n1)2n14(an2n)4bn,且b1a124,所以bn是以4为首项,以q4为公比的等比数列所以bnb1qn14n,所以an4n2n.()Sna1a2an(4424n)(2222n)(4n1)2(2n1)(2n1)232n12(2n11)(2n12)(2n11)(2n1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 证明 题型 总结 教师版 答案 61
限制150内