机械振动学复习试题(15页).doc
《机械振动学复习试题(15页).doc》由会员分享,可在线阅读,更多相关《机械振动学复习试题(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-(一)一、 填空题(本题15分,每空1分)1、不同情况进行分类,振动(系统)大致可分成,( )和非线性振动;确定振动和( );( )和强迫振动;周期振动和( );( )和离散系统。2、在离散系统中,弹性元件储存( ),惯性元件储存( ),( )元件耗散能量。3、周期运动的最简单形式是( ),它是时间的单一( )或( )函数。4、叠加原理是分析( )的振动性质的基础。5、系统的固有频率是系统( )的频率,它只与系统的( )和( )有关,与系统受到的激励无关。二、简答题(本题40分,每小题10分)1、 简述机械振动的定义和系统发生振动的原因。(10分)2、 简述振动系统的实际阻尼、临界阻尼、阻尼
2、比的联系与区别。(10分)3、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(10分)4、 多自由系统振动的振型指的是什么?(10分)K2IK1K3三、计算题(本题30分)1、 求图1系统固有频率。(10分)图12、 图2所示为3自由度无阻尼振动系统。(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设,求系统固有频率(10分)。Kt1Kt2I1Kt3I2I3I1Kt4图2 解:1)以静平衡位置为原点,设的位移为广义坐标,画出隔离体,根据牛顿第二定律得到运动微分方程:所以:系统运动微分方程可写为: (a)或者采用能量法:系统的动能和势能分别为 求偏导也可
3、以得到。2)设系统固有振动的解为:,代入(a)可得: (b)得到频率方程:即:解得:和所以: (c)将(c)代入(b)可得:10-1-0.22111.8211和解得:; ; 令,得到系统的三阶振型如图:四、证明题(本题15分)对振动系统的任一位移,证明Rayleigh商满足。这里,和分别是系统的刚度矩阵和质量矩阵,和分别是系统的最低和最高固有频率。(提示:用展开定理) 证明:对系统的任一位移x,Rayleigh商满足这里,K和M分别是系统的刚度矩阵和质量矩阵,和分别为系统的最低和最高固有频率。证明:对振动系统的任意位移x,由展开定理,x可按n个彼此正交的正规化固有振型展开:其中:u为振型矩阵,
4、c为展开系数构成的列向量:所以:由于:因此:由于:所以:即:证毕。(二)一、 填空题(本题15分,1空1分)1、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。2、按不同情况进行分类,振动系统大致可分成,线性振动和(非线性振动);确定性振动和随机振动;自由振动和和(强迫振动);周期振动和(非周期振动);(连续系统)和离散系统。3、(惯性 )元件、(弹性 )元件、(阻尼 )元件是离散振动系统的三个最基本元素。4、叠加原理是分析(线性振动系统 )的振动性质的基础。5、研究随机振动的方法是(统计方法),工程上常见的随机过程的数字特征有:(均值),(方差),(自相关)和互相关函数。6、系统的
5、无阻尼固有频率只与系统的(质量)和(刚度)有关,与系统受到的激励无关。二、简答题(本题40分,每小题5分)1、简述确定性振动和随机振动的区别,并举例说明。答:确定性振动的物理描述量可以预测;随机振动的物理描述量不能预测。比如:单摆振动是确定性振动,汽车在路面行驶时的上下振动是随机振动。2、简述简谐振动周期、频率和角频率(圆频率)之间的关系。答:,其中T是周期、是角频率(圆频率),f是频率。3、简述无阻尼固有频率和阻尼固有频率的联系,最好用关系式说明。答:,其中是阻尼固有频率,是无阻尼固有频率,是阻尼比。4、简述非周期强迫振动的处理方法。答:1)先求系统的脉冲响应函数,然后采用卷积积分方法,求得
6、系统在外加激励下的响应;2)如果系统的激励满足傅里叶变换条件,且初始条件为0,可以采用傅里叶变换的方法,求得系统的频响函数,求得系统在频域的响应,然后再做傅里叶逆变换,求得系统的时域响应;3)如果系统的激励满足拉普拉斯变换条件,且初始条件不为0,可以采用拉普拉斯变换的方法,求得系统的频响函数,求得系统在频域的响应,然后再做拉普拉斯逆变换,求得系统的时域响应;5、什么是共振,并从能量角度简述共振的形成过程。答:当系统的外加激励与系统的固有频率接近时候,系统发生共振;共振过程中,外加激励的能量被系统吸收,系统的振幅逐渐加大。6、简述刚度矩阵K的元素的意义。答:如果系统的第j个自由度沿其坐标正方向有
7、一个单位位移,其余各个自由度的位移保持为零,为保持系统这种变形状态需要在各个自由度施加外力,其中在第i个自由度上施加的外力就是kij。7、简述线性变换U矩阵的意义,并说明振型和U的关系。答:线性变换U矩阵是系统解藕的变换矩阵;U矩阵的每列是对应阶的振型。8、简述线性系统在振动过程中动能和势能之间的关系。答:线性系统在振动过程中动能和势能相互转换,如果没有阻尼,系统的动能和势能之和为常数。三、计算题(本题45分)1、设有两个刚度分别为,的线性弹簧如图1,计算它们并联时和串联时的总刚度。(5分) 图1图2图32、一质量为、转动惯量为的圆柱体作自由纯滚动,圆心受到一弹簧约束,如图2所示,求系统的固有
8、频率。(15分)3、求如图3所示的三自由度弹簧质量系统的固有频率和振型。(25分)(设 )1.解:1)对系统施加力P,则两个弹簧的变形相同为,但受力不同,分别为:由力的平衡有:故等效刚度为:2)对系统施加力P,则两个弹簧的变形为:,弹簧的总变形为:故等效刚度为:2. 解:取圆柱体的转角为坐标,逆时针为正,静平衡位置时,则当有转角时,系统有:由可知:即: (rad/s)3解:以静平衡位置为原点,设的位移为广义坐标,系统的动能和势能分别为求偏导得到:得到系统的广义特征值问题方程:和频率方程: 即:解得:和所以: 将频率代入广义特征值问题方程解得:; ; (三)一、 填空题(本题15分,每空1分)1
9、、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。3、周期运动的最简单形式是(),它是时间的单一()或()函数。4、叠加原理是分析( )系统的基础。5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。7、机械振动是指机械或结构在平衡位置附近的( )运动。答案:1、线性振动;随机振动;自由振动; 2、势能;动能;阻尼3、简谐运动;正弦;余弦4、线性5、刚度;质量6、频响函数;传递函数7、往复弹性二、简
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械振动 复习 试题 15
限制150内