机械原理第八版答案与解析(51页).doc
《机械原理第八版答案与解析(51页).doc》由会员分享,可在线阅读,更多相关《机械原理第八版答案与解析(51页).doc(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-机械原理第八版西北工业大学平面机构的结构分析1、如图a所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。解 1)取比例尺绘制其机构运动简图(图b)。 2)分析其是否能实现设计意图。 图 a)由图b可知,故:因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B、C、D组成不能运动的刚性桁架),故需要增加机构的自由度。图 b)3)提出修改方案(图c)。为了使此机构能运动,应增加机构的自由度(其
2、方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c给出了其中两种方案)。 图 c1) 图 c2)2、试画出图示平面机构的运动简图,并计算其自由度。 图a) 解:, 图 b) 解:,3、计算图示平面机构的自由度。将其中的高副化为低副。机构中的原动件用圆弧箭头表示。 31解31:,C、E复合铰链。 32解32:,局部自由度 33解33:,c)4、试计算图示精压机的自由度 解:, 解:, (其中E、D及H均为复合铰链) (其中C、F、K均为复合铰链)5、图示为一内燃机的机构简图,试计算其自由度,并分析组成此机构的基本杆组。又如在该机构中改选EG
3、为原动件,试问组成此机构的基本杆组是否与前者有所不同。解1)计算此机构的自由度 2)取构件AB为原动件时机构的基本杆组图为此机构为 级机构3)取构件EG为原动件时此机构的基本杆组图为此机构为 级机构平面机构的运动分析1、试求图示各机构在图示位置时全部瞬心的位置(用符号直接标注在图上)。 2、在图a所示的四杆机构中,=60mm,=90mm,=120mm,=10rad/s,试用瞬心法求:1) 当=时,点C的速度; 2) 当=时,构件3的BC线上速度最小的一点E的位置及其速度的大小;3)当=0 时,角之值(有两个解)。解1)以选定的比例尺作机构运动简图(图b)。 b)2)求,定出瞬心的位置(图b)因
4、为构件3的绝对速度瞬心,则有: 3)定出构件3的BC线上速度最小的点E的位置因BC线上速度最小之点必与点的距离最近,故从引BC线的垂线交于点E,由图可得:4)定出=0时机构的两个位置(作于 图C处),量出 c)3、在图示的机构中,设已知各构件的长度85 mm,=25mm,=45mm,=70mm,原动件以等角速度=10rad/s转动,试用图解法求图示位置时点E的速度和加速度以及构件2的角速度及角加速度。 a) l=0.002m/mm解1)以=0.002m/mm作机构运动简图(图a)2)速度分析 根据速度矢量方程:以0.005(m/s)/mm作其速度多边形(图b)。 b) =0.005(m/s2)
5、/mm(继续完善速度多边形图,并求及)。根据速度影像原理,作,且字母顺序一致得点e,由图得:(顺时针)(逆时针)3)加速度分析 根据加速度矢量方程:以=0.005(m/s2)/mm 作加速度多边形(图c)。(继续完善加速度多边形图,并求及)。 根据加速度影像原理,作,且字母顺序一致得点,由图得:(逆时针)4、在图示的摇块机构中,已知=30mm,=100mm,=50mm,=40mm,曲柄以=10rad/s等角速度回转,试用图解法求机构在时,点D和点E的速度和加速度,以及构件2的角速度和角加速度。解1)以=0.002m/mm作机构运动简图(图a)。2)速度分析=0.005(m/s)/mm选C点为重
6、合点,有:以作速度多边形(图b)再根据速度影像原理,作,求得点d及e,由图可得(顺时针)3)加速度分析=0.04(m/s2)/mm根据其中:以作加速度多边形(图c),由图可得:(顺时针)5、在图示的齿轮-连杆组合机构中,MM为固定齿条,齿轮3的齿数为齿轮4的2倍,设已知原动件1以等角速度顺时针方向回转,试以图解法求机构在图示位置时,E点的速度及齿轮3、4的速度影像。解1)以作机构运动简图(图a)2)速度分析(图b)此齿轮连杆机构可看作为ABCD及DCEF两个机构串连而成,则可写出取作其速度多边形于图b处,由图得取齿轮3与齿轮4啮合点为K,根据速度影像原来,在速度图图b中,作求出k点,然后分别以
7、c、e为圆心,以、为半径作圆得圆及圆。求得齿轮3的速度影像是齿轮4的速度影像是6、在图示的机构中,已知原动件1以等速度=10rad/s逆时针方向转动,=100mm,=300mm,=30mm。当=、时,试用矢量方程解析法求构件2的角位移及角速度、角加速度和构件3的速度和加速度。解 取坐标系xAy,并标出各杆矢量及方位角如图所示:1)位置分析 机构矢量封闭方程 分别用和点积上式两端,有故得:2)速度分析 式a对时间一次求导,得 上式两端用点积,求得:式d)用点积,消去,求得 3)加速度分析 将式(d)对时间t求一次导,得:用点积上式的两端,求得:用点积(g),可求得:351.06318.3162.
8、1692.69025.10920.1740.8670.3896.6527.5027、在图示双滑块机构中,两导路互相垂直,滑块1为主动件,其速度为100mm/s,方向向右,=500mm,图示位置时=250mm。求构件2的角速度和构件2中点C的速度的大小和方向。解:取坐标系oxy并标出各杆矢量如图所示。1) 位置分析 机构矢量封闭方程为: 2)速度分析 当, ,(逆时针) , 像右下方偏。8、在图示机构中,已知=,=100rad/s,方向为逆时针方向,=40mm,=。求构件2的角速度和构件3的速度。解,建立坐标系Axy,并标示出各杆矢量如图所示:1位置分析 机构矢量封闭方程2速度分析 消去,求导,
9、 平面连杆机构及其设计1、在图示铰链四杆机构中,已知:=50mm,=35mm,=30mm,为机架,1)若此机构为曲柄摇杆机构,且为曲柄,求的最大值;2)若此机构为双曲柄机构,求的范围;3)若此机构为双摇杆机构,求的范围。 解:1)AB为最短杆 2)AD为最短杆,若 若 3) 为最短杆 , 为最短杆 由四杆装配条件 2、在图示的铰链四杆机构中,各杆的长度为a=28mm,b=52mm,c=50mm,d=72mm。试问此为何种机构?请用作图法求出此机构的极位夹角,杆的最大摆角,机构的最小传动角和行程速度比系数。解1)作出机构的两个极位,由图中量得 2)求行程速比系数3)作出此机构传动角最小的位置,量
10、得此机构为 曲柄摇杆机构 3、现欲设计一铰链四杆机构,已知其摇杆的长=75mm,行程速比系数=1.5,机架的长度为=100mm,又知摇杆的一个极限位置与机架间的夹角为45,试求其曲柄的长度和连杆的长。(有两个解)解:先计算并取作图,可得两个解 4、如图所示为一已知的曲柄摇杆机构,现要求用一连杆将摇杆和滑块连接起来,使摇杆的三个已知位置、和滑块的三个位置、相对应(图示尺寸系按比例尺绘出),试以作图法确定此连杆的长度及其与摇杆铰接点E的位置。(作图求解时,应保留全部作图线 。=5mm/mm)。解(转至位置2作图)故5、图a所示为一铰链四杆机构,其连杆上一点E的三个位置E1、E2、E3位于给定直线上
11、。现指定E1、E2、E3和固定铰链中心A、D的位置如图b所示,并指定长度=95mm, =70mm。用作图法设计这一机构,并简要说明设计的方法和步骤。解:以D为圆心,为半径作弧,分别以,为圆心,为半径交弧,代表点E在1,2,3位置时占据的位置,使D反转,得使D反转,得 CD作为机架,DA、CE连架杆,按已知两连架杆对立三个位置确定B。凸轮机构及其设计1、在直动推杆盘形凸轮机构中,已知凸轮的推程运动角/2,推杆的行程=50mm。试求:当凸轮的角速度=10rad/s时,等速、等加等减速、余弦加速度和正弦加速度四种常用运动规律的速度最大值和加速度最大值及所对应的凸轮转角。解推杆运动规律(m/s)(m/
12、s2)等速运动等加速等减速余弦加速度正弦加速度2、已知一偏置尖顶推杆盘形凸轮机构如图所示,试用作图法求其推杆的位移曲线。解 以同一比例尺=1mm/mm作推杆的位移线图如下所示3、试以作图法设计一偏置直动滚子推杆盘形凸轮机构的凸轮轮廓曲线。已知凸轮以等角速度逆时针回转,偏距=10mm,从动件方向偏置系数=1,基圆半径=30mm,滚子半径=10mm。推杆运动规律为:凸轮转角=0150,推杆等速上升16mm;=150180,推杆远休; =180300 时,推杆等加速等减速回程16mm; =300360时,推杆近休。解 推杆在推程段及回程段运动规律的位移方程为:1) 推程: ,2) 回程:等加速段 ,
13、 等减速段 ,取=1mm/mm作图如下:计算各分点得位移值如下:总转角0153045607590105120135150165s01.63.24.86.489.611.212.814.41616180195210225240255270285300315330360s1615.51411.584.520.500004、试以作图法设计一摆动滚子推杆盘形凸轮机构的凸轮轮廓曲线,已知=55mm,=25mm,=50mm,=8mm。凸轮逆时针方向等速转动,要求当凸轮转过180时,推杆以余弦加速度运动向上摆动=25;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。解 摆动推杆在推程及回程中的角位
14、移方程为1)推程: ,2)回程: ,取=1mm/mm 作图如下:总转角015304560759010512013515016500.431.673.666.259.2612.515.7418.7521.3423.3224.571801952102252402552702853003153303602524.9024.2822.7320.1116.5712.58.434.892.270.720.095、在图示两个凸轮机构中,凸轮均为偏心轮,转向如图。已知参数为=30mm, =10mm, =15mm,5mm,=50mm,=40mm。E、F为凸轮与滚子的两个接触点,试在图上标出:1)从E点接触到F点
15、接触凸轮所转过的角度;2)F点接触时的从动件压力角;3)由E点接触到F点接触从动件的位移s(图a)和(图b)。4)画出凸轮理论轮廓曲线,并求基圆半径;5)找出出现最大压力角的机构位置,并标出。 齿轮机构及其设计1、设有一渐开线标准齿轮=20,=8mm,=20,=1,试求:1)其齿廓曲线在分度圆及齿顶圆上的曲率半径、 及齿顶圆压力角;2)齿顶圆齿厚及基圆齿厚;3)若齿顶变尖(=0)时,齿顶圆半径又应为多少?解1)求、2)求 、3)求当=0时由渐开线函数表查得:2、试问渐开线标准齿轮的齿根圆与基圆重合时,其齿数应为多少,又当齿数大于以上求得的齿数时,基圆与齿根圆哪个大?解 由有当齿根圆与基圆重合时
16、,当时,根圆大于基圆。3、一个标准直齿圆柱齿轮的模数=5mm,压力角=20,齿数=18。如图所示,设将直径相同的两圆棒分别放在该轮直径方向相对的齿槽中,圆棒与两侧齿廓正好切于分度圆上,试求1)圆棒的半径;2)两圆棒外顶点之间的距离(即棒跨距)。解:4、有一对渐开线标准直齿圆柱齿轮啮合,已知19,42,5mm。1)试求当20时,这对齿轮的实际啮合线B1B2的长、作用弧、作用角及重合度;)绘出一对齿和两对齿的啮合区图(选适当的长度比例尺仿课本上图5-19作图,不用画出啮合齿廓),并按图上尺寸计算重合度。解:1)求及 2)如图示5、已知一对外啮合变位齿轮传动,=12,=10mm,=20, =1,=1
17、30mm,试设计这对齿轮传动,并验算重合度及齿顶厚(应大于0.25m,取)。解 1)确定传动类型故此传动应为 正 传动。2)确定两轮变位系数取3) 计算几何尺寸尺寸名称几何尺寸计算中心距变动系数齿顶高变动系数齿顶高齿根高分度圆直径齿顶圆直径齿根圆直径基圆直径分度圆齿厚4) 检验重合度和齿顶厚 故可用。6、现利用一齿条型刀具(齿条插刀或齿轮滚刀)按范成法加工渐开线齿轮,齿条刀具的基本参数为:=4mm, =20, =1, =0.25, 又设刀具移动的速度为V刀=0.002m/s,试就下表所列几种加工情况,求出表列各个项目的值,并表明刀具分度线与轮坯的相对位置关系(以L表示轮坯中心到刀具分度线的距离
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 原理 第八 答案 解析 51
限制150内