李春喜《生物统计学》第三版课后作业答案(44页).doc





《李春喜《生物统计学》第三版课后作业答案(44页).doc》由会员分享,可在线阅读,更多相关《李春喜《生物统计学》第三版课后作业答案(44页).doc(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-生物统计学第三版 课后作业答案(李春喜、姜丽娜、邵云、王文林编著)第一章 概论(P7)习题1.1 什么是生物统计学?生物统计学的主要内容和作用是什么?答:(1)生物统计学(biostatistics)是用数理统计的原理和方法来分析和解释生物界各种现象和实验调查资料,是研究生命过程中以样本来推断总体的一门学科。(2)生物统计学主要包括实验设计和统计推断两大部分的内容。其基本作用表现在以下四个方面:提供整理和描述数据资料的科学方法;确定某些性状和特性的数量特征;判断实验结果的可靠性;提供由样本推断总体的方法;提供实验设计的一些重要原则。习题1.2 解释以下概念:总体、个体、样本、样本容量、变量、
2、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。答:(1)总体(populatian)是具有相同性质的个体所组成的集合,是研究对象的全体。(2)个体(individual)是组成总体的基本单元。(3)样本(sample)是从总体中抽出的若干个个体所构成的集合。(4)样本容量(sample size)是指样本个体的数目。(5)变量(variable)是相同性质的事物间表现差异性的某种特征。(6)参数(parameter)是描述总体特征的数量。(7)统计数(statistic)是由样本计算所得的数值,是描述样本特征的数量。(8)效应(effection)试验因素相对独立的作用称为该因
3、素的主效应,简称效应。(9)互作(interaction)是指两个或两个以上处理因素间的相互作用产生的效应。(10)实验误差(experimental error)是指实验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。(11)随机误差(random)也称抽样误差或偶然误差,它是有实验中许多无法控制的偶然因素所造成的实验结果与真实结果之间产生的差异,是不可避免的。随机误差可以通过增加抽样或试验次数降低随机误差,但不能完全消。(12) 系统误差(systematic)也称为片面误差,是由于实验处理以外的其他条件明显不一致所产生的倾向性的或定向性的偏差。系统误差主要由一些相对
4、固定的因素引起,在某种程度上是可控制的,只要试验工作做得精细,在试验过程中是可以避免的。(13) 准确性(accuracy)也称为准确度,指在调查或实验中某一实验指标或性状的观测值与其真值接近的程度。(14) 精确性(precision)也称精确度,指调查或实验中同一实验指标或性状的重复观测值彼此接近程度的大小。(15)准确性是说明测定值堆真值符合程度的大小,用统计数接近参数真值的程度来衡量。精确性是反映多次测定值的变异程度,用样本间的各个变量间变异程度的大小来衡量。习题1.3 误差与错误有何区别?答:误差是指实验中不可控制因素所引起的观测值偏离真值的差异,其中随机误差只可以设法降低,但不能避
5、免,系统误差在某种程度上可控制、可克服的;而错误是指在实验过程中,人为的作用所引起的差错,是完全可以避免的。第二章 实验资料的整理与特征数的计算(P22、P23)习题2.1 什么是次数分布表?什么是次数分布图?制表和绘图的基本步骤有哪些?制表和绘图时应注意些什么?答:(1)对于一组大小不同的数据划出等距的分组区间(称为),然后将数据按其数值大小列入各个相应的组别内,便可以出现一个有规律的表式,这种称之为次数分布表。(2)次数分布图是指把次数分布资料画成图状,包括条形图、饼图、直方图、多边形图和散点图。(3)制表和绘图的基本步骤包括:求全距;确定组数和组距;确定组限和组中值;分组,编制次数分布表
6、。(4)制表和绘图时需要注意的是事先确定好全距、组数、组距、各组上下限,再按观测值的大小来归组。习题2.2 算数平均数与加权数形式上有何不同?为什么说它们的实质是一致的?答:(1)形式不同在于计算公式的不同:算数平均数的计算公式为M =;加权平均数的计算公式为M =。(2)因为它们反映的都是同一组数据的平均水平。 习题2.3 平均数与标准差在统计分析中有什么作用?它们各有哪些特性?答:(1)平均数(mean)的用处:平均数指出了一组数据资料内变量的中心位置,标志着资料所代表性状的数量水平和质量水平;作为样本或资料的代表数据与其它资料进行比较。(2)平均数的特性:离均差之和等于零;离均差平方和为
7、最小。(3)标准差(standard deviation)的用处:标准差的大小,受实验或调查资料中多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小;在计算标准差时,如果对各观测值加上火减去一个常数a,标准差不变;如果给各观测值乘以或除以一个常数a,则所得的标准差扩大或缩小了a倍;在正态分布中,一个样本变量的分布可以作如下估计: s内的观测值个数约占观测值总个数的68.26,2s内的观测值个数约占总个数的95.49,3s内的观测值个数约占观测值总个数的99.73。(4)标准差的特性: 表示变量的离散程度,标准差小,说明变量的分布比较密集在平均数附近,标准差
8、大,则说明变量的分布比较离散,因此,可以用标准差的大小判断平均数代表性的强弱;标准差的大小可以估计出变量的次数分布及各类观测值在总体中所占的比例;估计平均数的标准误,在计算平均数的标准误时,可根据样本标准差代替总体标准差进行计算;进行平均数区间估计和变异系数的计算。习题2.4 总统和样本的平均数、标准差有什么共同点?又有什么联系和区别?答:(1)总体和样本的平均数都等于资料中各个观测值的总和除以观测值的个数所得的商。二者区别在于,总体平均数用表示,=,公式中分母为总体观测值的个数N,样本平均数用=,公式中的分分母为样本观测值的个数n。样本平均数是总体平均数的无偏估计值。(2)总体和样本的标准差
9、都等于离均差的平方和除以样本容量。二者的区别在于,总体标准差用表示,分母上总体观测值的个数N;标准差用s表示,分母上是样本自由度n-1。样本标准差s是总体标准差的无偏估计值。习题2.5答:见下图100例30-40岁健康男子血清总胆固醇(mol/L)的次数分布表组限(mol/L)组中值(mol/L)次数频率累积频率2.60-2.870 20.02 0.02 3.10-3.370 80.08 0.10 3.60-3.850 120.12 0.22 4.10-4.375 240.24 0.46 4.60-4.845 200.20 0.66 5.10-5.325 180.18 0.84 5.60-5.
10、825 70.07 0.91 6.10-6.345 80.08 0.99 6.60-0.000 00.00 0.99 7.10-7.220 10.01 1.00 习题2.6答:见下图这100例男子的血清总胆固醇基本呈正态分布,中间4.1-5.1mol/L的最多,两边少,但6.6-7.1 mol/L的没有。习题2.7答:见下图由上表可知:平均数=4.7389,标准差s=0.86665,而CV=s /* 100% =18%习题2.8答:由习题2.7的表可知:中位数Median=4.6600,平均数=4.7389,两数相差0.0789,符合正态分布。习题2.9答:分析见下图:由上图可知:“24号”玉
11、米的平均数=20,标准差s=1.24722,而CV=s /* 100% =6.24%;“金皇后”玉米的平均数=20,标准差s=3.39935,而CV=s /* 100% =17.00%,比较二者的变异系数CV,“24号”玉米的的变异系数CV 比“金皇后”玉米的小得多,说明“24号”玉米的整齐度大于“金皇后”玉米。习题2.10答:分析见下图:由上图可知,贻贝单养的平均数1=42.46,极差R1=53-25=28.00,标准差s1=6.97579,CV1=s1 /1 * 100% =16.43%;贻贝与海带混养的平均数2=52.10,极差R1=69-39=30.00,标准差s2=6.33503,C
12、V2=s2 /2* 100% =12.16%,虽然单养的极差较小(28),但贻贝与海带混养的平均数更大(52.10),且混养的变异系数更小,即其整齐度更有优势,由此得出,贻贝与海带混养的效果更好。第三章 概率与概率分布(P48)习题3.1 试解释必然事件、不可能事件和随机事件。举出几个随机事件例子。答:(1)必然事件(certain event)是指在一定条件下必然出现的事件;相反,在一定条件下必然不出现的事件叫不可能事件(impossible);而在某些确定条件下可能出现,也可能不出现的事件,叫随机事件(random event)。(2)例如,发育正常的鸡蛋,在39下21天会孵出小鸡,这是必
13、然事件;太阳从西边出来,这是不可能事件;给病人做血样化验,结果可能为阳性,也可能为阴性,这是随机事件。习题3.2 什么是互斥事件?什么是对立事件?什么是独立事件?试举例说明。答:(1)事件A和事件B不能同时发生,即AB=V,那么称事件A和事件B为互斥事件(mutually exclusion event),如人的ABO血型中,某个人血型可能是A型、B型、O型、AB型4中血型之一,但不可能既是A型又是B型。(2)事件A和事件B必有一个发生,但二者不能同时发生即A+B=U,AB=V,则称事件A与事件B为对立事件(contrary event),如抛硬币时向上的一面不是正面就是反面。事件A与事件B的
14、发生毫无关系。(3)事件B的发生与事件A的发生毫无关系,则称事件A与事件B为独立事件(independent event),如第二胎生男生女与第一台生男生女毫无关系。习题3.3 什么是频率?什么是概率?频率如何转化为概率?答:(1)事件A在n次重复试验中发生了m次,则比值mn称为事件A发生的频率(frequency),记为W(A)。(2)事件A在n次重复试验中发生了m次,当试验次数n不断增加时,事件A发生的频率W(A)就越来越接近某一确定值p,则p即为事件A发生的概率(probability)。(3)二者的关系是:当试验次数n充分大时,频率转化为概率 。习题3.4 什么是正态分布?什么是标准正
15、态分布?正态分布曲线有何特点?u和 对正态分布曲线有何影响?答:(1)正态分布是一种连续型随机变量的概率分布,它的分布特征是大多数变量围绕在平均数左右,由平均数到分布的两侧,变量数减小,即中间多,两头少,两侧对称。(2)=0,=1的正态分布为标准正态分布,记为N(0,1)。(3)正态分布具有以下特点:正态分布曲线是以平均数为峰值的曲线,当x=时,f(x)取最大值;正态分布是以为中心向左右两侧对称的分布 的绝对值越大,f(x)值就越小,但f(x)永远不会等于0,所以正态分布以x轴为渐近线,x的取值区间为(-,+); 正态分布曲线完全由参数和s来决定 正态分布曲线在x=s处各有一个拐点;正态分布曲
16、线与x轴所围成的面积必定等于1。(4)正态分布具有两个参数和s,决定正态分布曲线在x轴上的中心位置,减小曲线左移,增大则曲线右移;s决定正态分布曲线的展开程度,s越小曲线展开程度越小,曲线越陡,s越大曲线展开程度越大,曲线越矮宽。习题3.5答:查附表1可得:(1)P=(0.31.8)=F(=1.8)-F(=0.3)=0.96407-0.6107=0.3533(2)P=(-11)=F(=1)-F(=-1)=0.8413-0.1587=0.6826(3)P=(-22)=F(=2)-F(=-2)=0.97725-0.02275=0.9545(4)P=(-1.961.96)=F(=1.96)-F(=-
17、1.96)=0.97500-0.02500=0.9500(5)P=(-2.582.58)=F(=2.58)-F(=-2.58)=0.99506-0.00494=0.9901习题3.6解:因为x服从=4,=4的正太分布N(4,16),故通过标准化转换公式u=可转化为:(1) P(-3x4) P(-1.750) P=(-1.750)=F(=0)-F(=-1.75)=0.5000-0.04006=0.45994(2) P(x2.44) P(-0.39) P=(-1.5) P(-1.375)P(-1.38) P=(-1.38)=1-F(= -1.38)=1-0.08379=0.91621(4) P(x
18、-1) P(-1.25)P=(-1.25)=1-F(= -1.25)=1-0.1056=0.89440习题3.7解:(1) 根据基因分离定律和基因自由组合定律可知:F1代非糯稻Ww与糯稻ww回交,F2代糯稻和非糯稻的概率均为1/2,其中糯稻有200*1/2=100株,非糯稻有200*1/2=100株。 (2) 糯稻为2000*1/4=500株,非糯稻为2000*3/4=1500株。习题3.8解:由题意可知这种遗传符合泊松分布,P=0.0036(1) , = np =200*0.0036=0.72,P (1) =0.721*e-0.45 / 1!= 0.72* e-0.45 =0.4591 (2
19、) 调查的株数n应满足e-=e-np =0.01 因此n = =1280 (株)习题3.9解:此题符合二项分布,n=5,p=0.425,q=1-0.425=0.575 故 “四死一生”的概率P(4)= p4q1 = 5*0.425 4*0.5751 = 0.09378习题3.10解:设x服从这一正态分布。因为x服从=16,=2的正太分布N(16,4),故通过标准化转换公式u=可转化为:(1) P(10x20) P(-32)P=(-32)=F(=2)-F(=-3)=0.97725-0.001350=0.97590落于10到20间的数据的百分数为97.59%。(2) P(x20) P(2) P1=
20、(2)=1-F(=2)=1-0.97725=0.02275 P1 (2)的总概率P=P1+ P2=0.02275+0.02275=0.04550小于12或大于20的数据的百分数为4.55%。习题3.11解:(1)查附表3可知,当df =5时: P (t= 2.571)=0.05,故P (t-2.571)=0.05/2=0.025 P (t= 4.032)=0.01,故P (t4.032)=0.01/2=0.005(2)查附表4可知,当df =2时: P (= 0.05) =0.975,故P (0.05) =0.975 P (= 5.99) =0.05,故P (5.99) =1-0.05=0.9
21、5 P (= 0.05) =0.975,故P 0.05) = 1-0.975=0.025P (= 7.38) = 0.025,故P (7.38) =0.025P (0.057.38)= P (0.05)=0.025-0.025=0 (3)查附表5可知,当df1 =3,df2 =10时: P (F3.71)=0.05P (F6.55)=0.01第四章 统计推断(P78-79)习题4.1 什么是统计推断?统计推断有哪两种?其含义是什么?答:(1)统计推断(statistical inference)是根据总体理论分布由一个样本或一系列样本所得的结果来推断总体特征的过程。(2)统计推断主要包括参数估
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物统计学 李春喜生物统计学第三版 课后作业答案44页 李春喜 生物 统计学 第三 课后 作业 答案 44

限制150内