第九章_不等式与不等式组复习课(1).ppt
《第九章_不等式与不等式组复习课(1).ppt》由会员分享,可在线阅读,更多相关《第九章_不等式与不等式组复习课(1).ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、育才学校 许国林实际问题实际问题不等关系不等关系不等式不等式一元一次不等式一元一次不等式一元一次不等式组一元一次不等式组不等式的性质不等式的性质解集解集解集解集数轴表示数轴表示数轴表示数轴表示解解 法法解解 法法实际应用实际应用 一、重要性质一、重要性质: 1)不等式两边都不等式两边都加上加上(或减去或减去)同一个数同一个数 或同一个整式或同一个整式,不等号的方向不等号的方向_. 2)不等式两边都不等式两边都乘以乘以(或除以或除以)同一个同一个 正数正数,不等号的方向不等号的方向_. 3)不等式两边都不等式两边都乘以乘以(或除以或除以)同一个同一个 负数负数,不等号的方向不等号的方向_. 另外
2、另外:不等式还具有不等式还具有_性性.如如:当当ab, bc时时,则则ac不变不变不变不变改变改变记住哦记住哦! !传递传递基本概念辨析:(抢答)基本概念辨析:(抢答)1 1、在下列数学表达式中找出不等式、在下列数学表达式中找出不等式 :03054x3xxx 24x51x82yxxx54)2(3找出其中的一元一次不等式找出其中的一元一次不等式2、若若 是关于是关于x x的一元的一元一次不等式则一次不等式则 a a 的值为的值为 。axaa28)21(a=-2(1)若若 的解集为的解集为 ,求求a的取值的取值范围范围 _。bax abx (2)若若不等式不等式(a-2)x a-2的解集为的解集为
3、x3的解集为的解集为x -1,求,求m的值。的值。 解一元一次不等式解一元一次不等式和解一元一次方程类似和解一元一次方程类似,有有 去分母去分母 去括号去括号 移项移项 合并同类项合并同类项 系数化为系数化为1等步骤等步骤. 区别在哪里区别在哪里?在在系数化为系数化为1的这一步中的这一步中,要要特别注意特别注意不等式的两不等式的两边都乘以边都乘以(或除以或除以)一个一个负数负数时时,不等号的方向必不等号的方向必须须改变方向改变方向.1、一元一次不等式的解法、一元一次不等式的解法二、方法与过程二、方法与过程2、一元一次不等式组的解法、一元一次不等式组的解法(1)、先分别求出不等式组中各个不等)、
4、先分别求出不等式组中各个不等式的解集式的解集。(2)、利用数轴找出各个不等式的解集的)、利用数轴找出各个不等式的解集的公共部分。公共部分。(3)、写出不等式组的解集。)、写出不等式组的解集。特别注意:用数轴表示不等式的解集时,特别注意:用数轴表示不等式的解集时,” 、“用空心,用空心,” 、“用实心。用实心。” 、“向右画,向右画,” 、“向左画。向左画。3、用一元一次不等式(组)解决实用一元一次不等式(组)解决实际问题的步骤际问题的步骤:实际实际问题问题设一个设一个未知数未知数列不等列不等式(组)式(组)解不等解不等式(组)式(组)检验解是否检验解是否符合情况符合情况 8x-415x-608
5、x-15x-60+4 -7x-56 x8去分母去分母得得:去括号去括号得得:移项移项得得:合并同类项合并同类项得得:化系数为化系数为1得得:与解一元一次与解一元一次方程方法类似方程方法类似解解:同乘最简同乘最简公分母公分母12,方向不变方向不变同除以同除以-7,方向改变方向改变2151.5,34.xx解不等式并把它的解集在数轴上表示出来) 545(12) 12(4xx0 12-1345678我来试试我来试试:2.解不等式组解不等式组: 33)4(2545312xxxx由由不等式不等式得得: x8由由不等式不等式得得: x5 原不等式原不等式组的解集为组的解集为:5x8解解:0 1 2-1345
6、678与解方程组的与解方程组的方法完全不同方法完全不同3、求不等式(组)的特殊解:、求不等式(组)的特殊解:(1)求不等式求不等式 3x+14x-5的正整数解的正整数解(2)求不等式组求不等式组 的整数解的整数解.2151(2)32xx (1)求不等式求不等式 3x+14x-5的正整数解的正整数解移项移项得得:合并同类项合并同类项得得:化系数为化系数为1得得:解解:3x4x-5-1x -6x6所以不等式不等式 的正整数解为:的正整数解为:1、2、3、4、5、6(2)求不等式组求不等式组 的整数解的整数解.2151(2)32xx 解解:04由由不等式不等式得得: x2由由不等式不等式得得: x4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九 不等式 复习
限制150内