数学必修四公式(8页).doc
《数学必修四公式(8页).doc》由会员分享,可在线阅读,更多相关《数学必修四公式(8页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数学必修四公式-第 15 页数学必修四公式公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k+)=sin cos(2k+)=cos tan(2k+)=tan cot(2k+)=cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin(+)=-sin cos(+)=-cos tan(+)=tan cot(+)=cot 公式三: 任意角与 -的三角函数值之间的关系: sin(-)=-sin cos(-)=cos tan(-)=-tan cot(-)=-cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin(-)=sin cos
2、(-)=-cos tan(-)=-tan cot(-)=-cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2-)=-sin cos(2-)=cos tan(2-)=-tan cot(2-)=-cot 公式六: /2及3/2与的三角函数值之间的关系: sin(/2+)=cos cos(/2+)=-sin tan(/2+)=-cot cot(/2+)=-tan sin(/2-)=cos cos(/2-)=sin tan(/2-)=cot cot(/2-)=tan sin(3/2+)=-cos cos(3/2+)=sin tan(3/2+)=-cot cot(3/
3、2+)=-tan sin(3/2-)=-cos cos(3/2-)=-sin tan(3/2-)=cot cot(3/2-)=tan (以上kZ) 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于k/2(kZ)的个三角函数值, 当k是偶数时,得到的同名函数值,即函数名不改变; 当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan. (奇变偶不变) 然后在前面加上把看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2-)=sin(4/2-),k=4为偶数,所以取sin。 当是锐角时,2-(270,360),sin(2-)0,符号为“-
4、”。 所以sin(2-)=-sin 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360- 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 其他三角函数知识: 同角三角函数基本关系 同角三角函数的基本关系式 倒
5、数关系: tan cot=1 sin csc=1 cos sec=1 商的关系: sin/cos=tan=sec/csc cos/sin=cot=csc/sec 平方关系: sin2()+cos2()=1 1+tan2()=sec2() 1+cot2()=csc2() 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3
6、)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 两角和与差的三角函数公式 sin(+)=sincos+cossin sin(-)=sincos-cossin cos(+)=coscos-sinsin cos(-)=coscos+sinsin tan+tan tan(+)=- 1-tan tan tan-tan tan(-)=- 1+tan tan 倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2=2sincos cos2=cos2()-sin2()=2cos2()-1=1-2sin2() 2tan tan2
7、=- 1-tan2() 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) 1-cos sin2(/2)=- 2 1+cos cos2(/2)=- 2 1-cos tan2(/2)=- 1+cos 万能公式 万能公式 2tan(/2) sin=- 1+tan2(/2) 1-tan2(/2) cos=- 1+tan2(/2) 2tan(/2) tan=- 1-tan2(/2) 万能公式推导 附推导: sin2=2sincos=2sincos/(cos2()+sin2().*, (因为cos2()+sin2()=1) 再把*分式上下同除cos2(),可得sin2=tan2/(1+tan2() 然
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 公式
限制150内