《相似三角形》讲义(11页).doc
《《相似三角形》讲义(11页).doc》由会员分享,可在线阅读,更多相关《《相似三角形》讲义(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-相似三角形讲义-第 11 页相似三角形讲义一 教学目标:1 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。2 能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二 教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明三 教学过程:(一) 类比联想,动手实验1 回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形
2、所具有的性质(对应边、对应角相等)。2 让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系? (二)直观演示,展示新知 A1 相似三角形的定义 A/将上面所截得的三角形移出,记为 ABC,原三角形 B C B/ C /记为 ABC,因此有 A= A , B= B,C, ,即两个三角形的对应角相等,对应边成比例。这样的两个三角形虽然大小不一定相等,但形状相同。 定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 2表示方法: 教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可
3、以以此与全等符号及表示作一比较,加强记忆)。3 相似三角形的性质:相似三角形的对应角相等,对应边成比例。4 相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。强调: ABC与 ABC的相似比是k,则 ABC与 AB C的相似比是。练习:判断下列命题是否正确。错误的,举出反例;正确的,用定义加以说明:所有的等腰三角形都相似。所有的等边三角形都相似。所有的直角三角形都相似。所有的等腰直角三角形都相似。教师示范一个规范过程,让学生模仿,学会用定义来解决问题。 A(三)范例研讨,迁移练习: 1例1。如图,在 ABC中, D E DE/BC,D,E分别在AB,AC上。 B F C
4、求证:ADEABC 师生共同探讨:(1) 目前要证明两个三角形相似只能根据什么?(定义)(2) 根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3) ADE与ABC满足“对应角相等”吗?为什么?(4) 对应边成比例,由“DE/BC”的条件可得到怎样的比例式? (5) 本题的关键归结为“只要证明什么”?(6) 根据以前的推论,如何把DE移到BC上去,即应添怎样的辅助线?(EF/AB) 教师板演证明过程。2如图,DE/BC,D、E分别在BA、CA的延长线上, D EADE与ABC 相似吗? A相似C B 由此得到预备定理:3定理 平行于三角形一边的直线和其他两边(或
5、两边的延长线)相交,所构成的三角形与原三角形相似。4例2,如图,D为ABC的AB边上的一点,过点D作 C DE/AC,交BC于E,已知BE:EC=2:1,AC=6CM, 求DE的长。5、练习:P122页1、2、36、课后拓展(机动): (1)如图甲,已知 ABD ACB,则AD:AB= : , AB:BD= : ,如果AD=2,DC=1,那么AB= (2),如图乙,在 ABC中,AD是角平分线,求证: A A DB C B D C 图甲 图乙 五、归纳总结、布置作业:1 今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比
6、是1;2 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。3 作业相似三角形2四 教学目标:1 知识目标:(1)近一步理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)巩固判定三角形相似的预备定理及应用 掌握判定三角形相似的其他三个方法2 能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。五 教学重点、难点:重点:判定三角形相似的其他三个方法难点;判定三角形相似的其他三个方法及应用三 课堂探究:探究一 在一张方格纸上画
7、一个三角形,再画一个三角形,使它的各边长都是原来各边长的k倍,度量这两个三角形的对应角 它们有什么特点? 你认为这两个三角形之间是什么关系?A 你能把理由说来与大家分享吗 DECB如图:ABC和中, , 求证;ABC证明:截,过D作DE ABCABC结论:如果两个三角形的三组对应边的比相等,那么这两个三角形相似备注探究二 利用刻度尺和量角器画ABC和,使A=,量BC、的长度,量B、C、的度数你发现BC、的长度有什么关系?你发现B、C、的度数有什么关系?由、能得ABC和有什么关系?结论:如果两个三角形的两组对应边的比相等,且夹角相等,那么这两个三角形相似改变A和K的大小,是否有同样的结论?请同学
8、们自己证明这个结论ABC和,使B=, , 这两个三角形相似吗?探究三作ABC和,使A=、B=,分别度量两个三角形的边长你发现C与有什么关系?你发现、 、 有什么关系?由、能得ABC和有什么关系?结论:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似请同学们自己证明这个结论四 例题欣赏例1:根据下列条件,判断ABC和是否相似,并说明理由?A=、AB=7、AC=14=、=7、=14 AB=4、 BC=6、AC=8 =12、 =18、=21五、 课堂练习1、根据下列条件,判断ABC和是否相似,并说明理由?A=、AB=8、AC=15=、=16、=30 AB=10、 BC=8、
9、AC=16 =20、 =16、=322、图中的两个三角形是否相似/3、要做两个形状相同的三角形框架,其中一个的三边长为3、4、5,另一个三角形的一边长为2,它的另两条边长为多少?你有几个答案?4、底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论?5如图:RtABC中,CD是斜边上的高,ACD和ACBD和ABC相似吗?证明你的结论? 六、归纳总结、布置作业:4 今天学习了相似三角形的三个判定,5 作业相似三角形的性质教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。2、灵活运用相似三角形的判定和性质,提高分析,推理能力。过程
10、与方法:1、对性质定理的探究经历观察猜想论证归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。情感与态度:在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。教学重点:相似三角形性质定理的探索及应用教学难点:综合应用相似三角形的性质与判定探索三角
11、形中面积之间的关系教学方法与手段:探究式教学、小组合作学习、多媒体教学教学过程:一、创设情境,引入新课1、我们已经学了相似三角形的哪些性质?2、问题情境:某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面积有多少?周长是多少?你能解决这个问题吗?二、实践交流,探索新知1、看一看:ABC与ABC有什么关系?为什么?2、算一算:ABC与ABC的相似比是多少?ABC与ABC的周长比是多少?面积比是多少?3、想一想:你发现上面
12、两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?5、在学生思考、讨论的基础上给出证题过程(多媒体)6、归纳小结;相似三角形性质定理2相似三角形的周长比等于相似比,面积比等于相似比的平方。三、基础训练,加深理解练一练:已知两个三角形相似,请完成下列表格:相似比2周长比面积比10000归纳:周长比等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。四、综合应用,解决问题已知:如图,DEBC,AB=30m,BD=18m,ABC的周长为80m,面积为100m2,求ADE的周长和面积?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似三角形 相似 三角形 讲义 11
限制150内