整式的乘法与因式分解复习.ppt
《整式的乘法与因式分解复习.ppt》由会员分享,可在线阅读,更多相关《整式的乘法与因式分解复习.ppt(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、整式的乘法整式的乘法同底数幂的乘法同底数幂的乘法幂的乘方幂的乘方积的乘方积的乘方单项式的乘法单项式的乘法aman=am+nam n( )=amnabn( )=anb na2x54x2a3b(-3 )=4 ( -3)a3a2( )x2x5( )b=-12a5bx7整式的乘法整式的乘法同底数幂的乘法同底数幂的乘法幂的乘方幂的乘方积的乘方积的乘方单项式的乘法单项式的乘法单项式与多项式相乘单项式与多项式相乘多项式的乘法多项式的乘法aman=am+nam( )n=amnabn( )=anb na2x54x2a3b(-3 )m(a+b)=(a+b)(m+n)=ma+mbam+an+bm+bn底数不变底数不
2、变指数相乘指数相乘指数相加指数相加mnnmaa)(nmnmaaa同底数幂相乘同底数幂相乘幂的乘方幂的乘方其中其中m , n都是都是正整数正整数想想一一想想a2a3a5+=(1)a2aa2=(2)(x-y)2(y-x)5=(x-y)7(8)x2( )3=x5(4)a3x635-(x-y)7(y-x)747(6)(-5) (-5) =511-511(-3)233=(-3)5(7)2(5)35a2a=10a610a5(3)a3a3=2a3a6找一找找一找47-x2yz2( )74-xy2( )=x3y3105103-1021010( ) ( )-2 3( ) =-621-61-a2b3a8b27(
3、) 3=a3n23n( ) b2( )ab( ) =(A)(D)(B)(C)D6n口答练习口答练习x3x2=( )a62+a43( )=x x2( )3=x3x2002=71( )1997719982=( ) (-ab)-c2b3a3(1)(3)(7)-abc( ) (-ab)2=(6)(5)(4)(2)x52a12x7x19997-a3b3c2+abc比一比比一比算算计计(1)3x2( )3-7x3 x3-x4x2+1( )a2( )-2b2a+2b( )-2ab(a-b)(2)先化简,再求值先化简,再求值:其中其中a=1,b=21.公 式 的 反 向 使 用nmnmaaa mnnmmnaa
4、abababa323210102101710410)()(,求下列各式的值,已知公 式 的 反 向 使 用- - - - - - - - -单项式 的 除法 法则 如何进行单项式除以单项式的运算如何进行单项式除以单项式的运算?除式的系数除式的系数被除式的系数被除式的系数解: (1).(2xy)(7xy)(14x4y)=-56x7y5 (14x4y)= -4x3y2解:(2).(2a+b)4(2a+b)=(2a+b)= 4a2+4ab+b2=8x6y3 (7xy)(14x4y)= (2a+b)4-2(1)(-a)(1)(-a)8 8(-a(-a2 2) )(2)-5a(2)-5a5 5b b3
5、3c c5a5a4 4b b3 3(4)-3a(4)-3a2 2x x4 4y y3 3(-axy(-axy2 2) )(5)(4(5)(410109 9) )(-2(-210103 3) )=-a=-a6 6=-ac=-ac=3ax=3ax3 3y y=-2=-210106 6 (3) 6m(3) 6m2 2n n(-2mn)(-2mn)= -3m= -3m多项式除以单项式的法则abcmmm例 题 解 析aaaa3)61527( 1 23)()21()213( 2 22xyxyxyyx)( 例题例题 )21(32xyyx )21(21xyxy x6 .1 21()2xyxy2y(1)(-2a
6、(1)(-2a4 4b b3 3c)c)3 3(-8a(-8a4 4b b5 5c)c)(3(3 ) )(-3.6(-3.610101010) )(-2(-210102 2) )2 2(3(310102 2) )2 2=a=a8 8b b4 4c c2 2= 10= 10(2)(6x(2)(6x2 2y y3 3) )2 2(3xy(3xy2 2) )2 2=4x=4x2 2y y2 22234)21()212)(4(xxxx乘法公式乘法公式平方差公式平方差公式完全平方公式完全平方公式(两数和的平方)两数和的平方)(a+b)(a-b) =a2b2-(a+b)2=a2b22ab+二次三项型乘法公
7、式二次三项型乘法公式(x+a)(x+b)=x +(a+b)x+ab2 计算:计算: (1) (2x3)()(2x3) (2) (x2)()(x2) (3) (2xy)()(2xy) (4) (yx)()(xy) ( 5 )1998 例例1 计算计算 1998200219982002 =(2000-2)()(2000+2)2222000=4000000-4=3999996解解22)2)(2()2)(1 (nmnm:计算想一想想一想下列计算是否正确?如不正确,应下列计算是否正确?如不正确,应如何改正?如何改正?(-x+6)(-x-6) =-x2-6(1)2-x-1(-x-1)(x+1) =(2)=
8、(-x)2-62=x2-36-(x+1)=(x+1)=-(x+1)2=+1( )x22x-=-x2-2x-1(3)(-2xy-1)(2xy-1) =1-2xy2=(-1)2-(2xy)22=1-4x y2222222222)(_)(4(_)() 3(25_4_)2)(2(_6_)(1 (yxyxbabaxxaaa:填空39520 x2ab4xy已知已知(a+b)2=11,(a-b)2=7,则则ab=( )(1)(A) 1(B)-1(C) 0(D) 1或或-1(C)(D)(2) 如果如果4x +12xy+k是一个关于是一个关于x、y的完全的完全2平方式平方式,则则k=( )(A)(B)3y29y
9、2y36y 2是一个关于是一个关于x、y的完全平的完全平如果如果4x2+kxy+9y2方式,则方式,则k=( )AB+12(3)如果如果a+a1=3,则则a2+a21=( )(A) 7(B) 9(C) 10(D) 11所以所以=9a+a1( )2所以所以a +a1=922+2A故故a a1=72+2因为因为a+a1=3解:解:(a-2b+3)(a+2b-3)的结果是的结果是( )(A)22a+4b+12b-9(C)22a+4b -12b-9(B)a2-4b2-12b-9(D)a2-4b2+12b-9D(4)计算计算=a-(2b-3)a+(2b-3)=a2-(2b-3)2=a2-(4b -12b
10、+9)2 =a2-4b2+12b-9(a-2b+3)(a+2b-3)解:解:因式分解1.运用前两节所学的知识填空运用前两节所学的知识填空1).m(a+b+c)= .2).(a+b)(a-b)= .3).(a+b)2= .2.试一试试一试 填空填空:1).ma+mb+mc= m( )2).a2-b2=( )( )3).a2+2ab+b2=( )2ma+mb+mca2-b2a2+2ab+b2你能发现这你能发现这两组等式之两组等式之间的联系和间的联系和区别吗区别吗?a+b+c(a+b)(a-b)a+b 一般地,把一个多项式转化成几个整式一般地,把一个多项式转化成几个整式的的的形式,叫做的形式,叫做,
11、有时我们也把,有时我们也把这一过程叫做这一过程叫做。定义定义理解概念判断哪些是因式分解判断哪些是因式分解? (1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+1 (4) x2+4x+4=(x+2)2 (5)(a-3)(a+3)=a2-9 因式分解因式分解整式乘法整式乘法整式乘法整式乘法因式分解因式分解整式乘法整式乘法)43(43)6(2aaaaa两者都不是两者都不是像像(1)(1)这种因式分解的方法叫这种因式分解的方法叫提公因式法提公因式法像像(2),(3)(2),(3)利用乘法公式对多项式进行利用乘法公式对多项
12、式进行因式分解的这种因式分解的方法就称为因式分解的这种因式分解的方法就称为公式法公式法. .1) ma+mb+mc=m( a+b+c )2) a2-b2=(a+b)(a-b )3)a2+2ab+b2=(a+b)2注意事项注意事项 1) 首选提公因式法首选提公因式法,其次考虑公式法其次考虑公式法 2)两项考虑平方差法,三项考虑完全平方公式两项考虑平方差法,三项考虑完全平方公式 3)因式分解要砌底)因式分解要砌底 4)(可用整式的乘法检验)但不走回头路)(可用整式的乘法检验)但不走回头路找出下列各多项式中的公因式找出下列各多项式中的公因式2231218)3(525)2(1536)1 (babaaa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式 乘法 因式分解 复习
限制150内