《四川省成都市冉义中学2022年高三数学文月考试题含解析.pdf》由会员分享,可在线阅读,更多相关《四川省成都市冉义中学2022年高三数学文月考试题含解析.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Word 文档下载后(可任意编辑)四川省成都市冉义中学四川省成都市冉义中学 2021-20222021-2022 学年高三数学文月考试题含学年高三数学文月考试题含解析解析一、一、 选择题:本大题共选择题:本大题共 1010 小题,每小题小题,每小题 5 5 分,共分,共 5050 分。在每小题给出的四个选项中,只有分。在每小题给出的四个选项中,只有是一个符合题目要求的是一个符合题目要求的1. 函数的定义域是ABCD参考答案:参考答案:A2. 命题“”的否定是()A BC D参考答案:参考答案:C3. 设函数和 g(x)分别是 R 上的偶函数和奇函数,则下列结论恒成立的是()A+|g(x)|是偶
2、函数B-|g(x)|是奇函数C| +g(x)是偶函数D|- g(x)是奇函数参考答案:参考答案:A4. 已知实数满足,则目标函数-1 的最大值为A5 B4CD参考答案:参考答案:B略5. 若 i 为虚数单位,图 1 中网格纸的小正方形的边长是 1,复平面内点 Z 表示复数 z,则复数的共轭复数是()参考答案:参考答案:C略6. 已知函数在单调递减,则的取值范围( ) A. B. C. D.参考答案:参考答案:D7. 等比数列an中,a1=2,a84,函数(- a1)(- a2)(- a8),则( )A. 26 B29 C 212 D215参考答案:参考答案:C8. 直线与 y轴的交点为 P,点
3、 P把圆的直径分为两段,则较长一段比上较短一段的值等于()A2B3C4D5Word 文档下载后(可任意编辑)参考答案:参考答案:A令代入可得,圆心坐标为,则与圆心的距离为,半径为 6,可知较长一段为 8,较短一段 4,则较长一段比上较短一段的值等于2故选 A9. 如图所示是一样本的频率分布直方图则由图中的数据,可以估计样本的平均数、众数与中位数分别是A12.5 ,12.5, 12.5B13, 12.5, 13C13, 13, 12.5D12.5, 13, 13参考答案:参考答案:B10. 已知在复平面内对应的点在直线上,则实数 m 的值是A.B.0 C.1 D.2参考答案:参考答案:C二、二、
4、 填空题填空题: :本大题共本大题共 7 7 小题小题, ,每小题每小题 4 4 分分, ,共共 2828 分分11. 用数学归纳法证明时,当时,其形式是参考答案:参考答案:12. 已知向量=(3,1),=(,3),且,则实数的取值为_参考答案:参考答案:1。由,得,得。13. 已知向量,满足,则_参考答案:参考答案:1【分析】直接利用数量积运算律化简即得解.【详解】因为,所以.故答案为:1【点睛】本题主要考查数量积的运算,意在考查学生对该知识的理解掌握水平和分析推理能力.14. 某商人将彩电先按原价提高 40%,然后“八折优惠”,结果是每台彩电比原价多赚144 元,那么每台彩电原价是元参考答
5、案:参考答案:1200【考点】一次函数的性质与图象【分析】设每台彩电原价是 x 元,由题意可得 (1+40%)x?0.8x=144,解方程求得 x 的值,即为所求【解答】解:设每台彩电原价是 x 元,由题意可得 (1+40%)x?0.8x=144,解得 x=1200,故答案为 1200【点评】本题主要考查一次函数的性质应用,属于基础题Word 文档下载后(可任意编辑)15. 已知向量为正常数,向量,且则数列的通项公式为。参考答案:参考答案:略16. 若点(其中)为平面区域内的一个动点,已知点,O 为坐标原点,则的最小值为_ 。参考答案:参考答案:13【分析】作出题中不等式组表示的平面区域,得如
6、图的及其内部根据题意,将目标函数对应的直线进行平移,由此可得本题的答案【详解】点坐标为,点坐标为,作出不等式组表示的平面区域,得到如图的区域,其中,可得,将直线进行平移,可得当 经过点时,目标函数 达到最小值,故答案为:13【点睛】本题给出二元一次不等式组,求目标函数的取值范围,着重考查了向量的数量积、二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题17. 已知正方体的棱长为 ,动点在正方体表面上运动,且(),记点的轨迹的长度为,则_;关于 的方程的解的个数可以为_.(填上所有可能的值).参考答案:参考答案:由定义可知当,点 P 的轨迹是半径为的圆周长,此时点 P 分别在三个侧
7、面上运动,所以。由正方体可知,当,点在三个面上运动,此时Word 文档下载后(可任意编辑)递增,当时,递减,当时,递增,当时,递减,如草图,所以方程的解的个数可能为 0,2,3,4 个。三、三、 解答题:本大题共解答题:本大题共 5 5 小题,共小题,共 7272 分。解答应写出文字说明,证明过程或演算步骤分。解答应写出文字说明,证明过程或演算步骤18. 如图,四棱锥 PABCD 中,PA底面 ABCD,PCAD底面 ABCD 为梯形,ABDC,ABBC,PA=AB=BC,点 E 在棱 PB 上,且 PE=2EB(1)求证:平面 PAB平面 PCB;(2)求证:PD平面 EAC参考答案:参考答
8、案:【考点】平面与平面垂直的判定;直线与平面平行的判定【分析】(1)根据 PA底面 ABCD,得到 PABC,结合 ABBC,可得 BC平面 PAB最后根据面面垂直的判定定理,可证出平面 PAB平面 PCB(2)利用线面垂直的性质,可得在直角梯形ABCD 中 ACAD,根据题中数据结合平行线分线段成比例,算出 DC=2AB,从而得到BPD 中,PE:EB=DM:MB=2,所以 PDEM,由线面平行的判定定理可得PD平面 EAC【解答】解:(1)PA底面 ABCD,BC?底面 ABCD,PABC,又ABBC,PAAB=A,BC平面PABBC?平面 PCB,平面 PAB平面 PCB(2)PA底面
9、ABCD,AC 为 PC 在平面 ABCD 内的射影又PCAD,ACAD在梯形 ABCD 中,由 ABBC,AB=BC,得,又ACAD,故DAC 为等腰直角三角形连接 BD,交 AC 于点 M,则由 ABCD 得:在BPD 中,所以 PDEM又PD?平面 EAC,EM?平面 EAC,PD平面 EAC19. (本小题满分 12分)如图,是圆的直径,点在圆上,于点,平面,()证明:;,交Word 文档下载后(可任意编辑)()求平面与平面所成的锐二面角的余弦值参考答案:参考答案:()延长交于,连,过作,连结由(1)知平面,平面,而,平面平面,为平面与平面所成的二面角的平面角8 分Word 文档下载后
10、(可任意编辑)在中,由,得又,则11 分是等腰直角三角形,平面与平面所成的锐二面角的余弦值为12 分(法二)()同法一,得3 分如图,以为坐标原点,垂直于、所在的直线为轴建立空间直角坐标系由已知条件得, 4 分由,得,6 分()由(1)知设平面的法向量为,由得,令得,9 分由已知平面,所以取面的法向量为,设平面与平面所成的锐二面角为,则, 11 分平面与平面所成的锐二面角的余弦值为12 分20. 如图所示,该几何体是由一个直三棱柱和一个四棱锥组合而成,其中.(1)证明:平面;(2)若四棱锥的高 2,求二面角的余弦值.Word 文档下载后(可任意编辑)参考答案:参考答案:(1)证明:直三棱柱中,
11、平面,所以,又,所以平面;(2)由(1)知平面,以为原点,方向为轴建立空间直角坐标系(如图所示),则,设平面的一个法向量,则,取,则,所以.设平面的一个法向量,则,取,则.所以,所以,因为二面角的平面角是锐角,所以所求二面角的余弦值为.21. 已知数列an中,.(1)求证:数列是等比数列;(2)求数列an的前 2n项和,并求满足的所有正整数 n.参考答案:参考答案:(1)设,因为,所以数列是以即为首项,以为公比的等比数列.(2)由(1)得,即,由,得,所以,显然当时,单调递减,又当时,当时,所以当时,;Word 文档下载后(可任意编辑),同理,当且仅当综上,满足时,的所有正整数为 和.22. 某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为已知生产此产品的年固定投入为 4.5万元,每生产 1 万件此产品仍需再投入 32 万元,且能全部销售完若每件销售价定为:“平均每件生产成本的 150%”与“年平均每件所占广告费的25%”之和(1)试将年利润 W(万元)表示为年广告费 x(万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?参考答案:参考答案:(1)由题意可得,产品的生产成本为(32Q4.5)万元,即当年广告费为 7 万元时,企业利润最大,最大值为55 万元【说明】函数应用题,基本不等式求最值
限制150内