19届 高考真题——文科数学(北京卷)+Word版含解析【KS5U+高考】.doc
《19届 高考真题——文科数学(北京卷)+Word版含解析【KS5U+高考】.doc》由会员分享,可在线阅读,更多相关《19届 高考真题——文科数学(北京卷)+Word版含解析【KS5U+高考】.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密本科目考试启用前2019年普通高等学校招生全国统一考试(北京卷)文科数学本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1.已知集合A=x|1x1,则AB=A. (1,1)B. (1,2)C. (1,+)D. (1,+)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】 , ,故选C.【点睛】考查并集求法,属于基础题.2.已知复数z=2+i,则A. B. C. 3D. 5【答案】D
2、【解析】【分析】题先求得,然后根据复数的乘法运算法则即得.【详解】 故选D.【点睛】本容易题,注重了基础知识、基本计算能力的考查.3.下列函数中,在区间(0,+)上单调递增的是A. B. y=C. D. 【答案】A【解析】【分析】根据函数图像性质可得出结果.【详解】函数, 在区间 上单调递减,函数 在区间上单调递增,故选A.【点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.4.执行如图所示的程序框图,输出的s值为A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据程序框图中的条件逐次运算即可.【详解】运行第一次,
3、, ,运行第二次, , ,运行第三次, , ,结束循环,输出 ,故选B.【点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.5.已知双曲线(a0)的离心率是 则a=A. B. 4C. 2D. 【答案】D【解析】【分析】本题根据根据双曲线的离心率的定义,列关于A的方程求解.【详解】分析:详解: 双曲线的离心率 , , ,解得 ,故选D.【点睛】对双曲线基础知识和基本计算能力的考查.6.设函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【
4、分析】根据定义域为R的函数为偶函数等价于进行判断.【详解】 时,, 为偶函数;为偶函数时,对任意的恒成立, ,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为m1的星的亮度为E2(k=1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为A. 1010.1B. 10.1C. lg10.1D. 【答案】D【解析】【分析】先求出,然后将对数式换指数式求再求【详解】两颗星的星等与亮度满足 ,令 ,
5、 , ,故选D.【点睛】考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.8.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为.图中阴影区域的面积的最大值为A. 4+4cosB. 4+4sinC. 2+2cosD. 2+2sin【答案】B【解析】【分析】阴影部分的面积S=SPAB+ S1- SOAB.其中S1、 SOAB的值为定值.当且仅当SPAB取最大值时阴影部分的面积S取最大值.【详解】观察图象可知,当P为弧AB的中点时,阴影部分的面积S取最大值,此时BOP=AOP=-, 面积S最大值为r2+SPOB+ SPOA=4+|OP|OB|sin(-)+|O
6、P|OA|Sin(-)=4+2Sin+2Sin=4+4 Sin,故选B.【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。9.已知向量=(4,3),=(6,m),且,则m=_.【答案】8.【解析】【分析】利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.若x,y满足 则的最小值为_,最大值为_.【答案】 (1
7、). . (2). 1.【解析】【分析】作出可行域,移动目标函数表示的直线,利用图解法求解.【详解】作出可行域如图阴影部分所示.设z=y-x,则y=x+z.当直线l0:y=x+z经过点A(2,-1)时,z取最小值-3,经过点B(2,3)时,z取最大值1.【点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.11.设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为_【答案】(x-1)2+y2=4.【解析】【分析】由抛物线方程可得焦点坐标,即圆心,焦点到准线距离即半径,进而求得结果.【详解】抛物线y2=4
8、x中,2P=4,P=2,焦点F(1,0),准线l的方程为x=-1,以F为圆心,且与l相切的圆的方程为 (x-1)2+y2=22,即为(x-1)2+y2=4.【点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.12.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示如果网格纸上小正方形的边长为1,那么该几何体的体积为_【答案】40.【解析】【分析】画出三视图对应的几何体,应用割补法求几何体的体积.【详解】在正方体中还原该几何体,如图所示几何体的体积V=43-(2+4)24=40【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.13
9、.已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_【答案】如果l,m,则lm.【解析】【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l,m,则lm. 正确;(2)如果l,lm,则m.不正确,有可能m在平面内;(3)如果lm,m,则l.不正确,有可能l与斜交、l.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- KS5U+高考 19届 高考真题文科数学北京卷+Word版含解析【KS5U+高考】 19 高考 文科 数学 北京 Word 解析 KS5U
限制150内