高中立体几何大题题.doc
《高中立体几何大题题.doc》由会员分享,可在线阅读,更多相关《高中立体几何大题题.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(2012江西省)(本小题满分12分)如图,在梯形ABCD中,ABCD,E,F是线段AB上的两点,且DEAB,CFAB,AB=12,AD=5,BC=4,DE=4.现将ADE,CFB分别沿DE,CF折起,使A,B两点重合及点G,得到多面体CDEFG.(1) 求证:平面DEG平面CFG;(2)求多面体CDEFG的体积。【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得又因为,可得,即所以平面DEG平面CFG.(2)过G作GO垂直于EF,GO 即为四棱锥G-EFCD的高,所以所求体积为2012,山东(19) (本小题满分12分)如图,几何体是四棱锥,为
2、正三角形,.()求证:;()若,M为线段AE的中点,求证:平面.解:设中点为O,连接OC,OE,则由知,又已知,所以平面OCE.所以,即OE是BD的垂直平分线,所以.(II)取AB中点N,连接,M是AE的中点,是等边三角形,.由BCD120知,CBD30,所以ABC60+3090,即,所以NDBC,所以平面MND平面BEC,故DM平面BEC.2012浙江20(本题满分15分)如图,在侧棱锥垂直底面的四棱锥中, 的中点,F是平面及直线的交点。证明: 求及平面所成的角的正弦值。解析:本题主要考查空间点、线、面位置关系,线面所成角等基础知识,同时考查空间想象能力和推理认证能力。 因为所以 又因为所以
3、 所以 因为所以 又因为 在矩形的中点, 即 所以 设及交点为,连接 由知所以所成的角在矩形在直角中,所以及平面所成的角的正弦值是(2010四川)18、(本小题满分12分)已知正方体中,点M是棱的中点,点是对角线的中点,()求证:OM为异面直线及的公垂线;()求二面角的大小;解:连接AC,取AC中点K,则K为BD中点,连接OK,因为点M是棱的中点,点是的中点,,AM,. 由,得. 因为,所以平面 ,. 又及异面直线和都相交,故为异面直线和的公垂线。 (5分) ()取的中点N,连接MN,则MN平面,过点N作NH于H,连接MH,则由三垂线定理得 ,从而为二面角的平面角。设,则,在中,.故二面角的大
4、小为。 (12分)2010辽宁文(19)(本小题满分12分) 如图,棱柱的侧面是菱形,()证明:平面平面;()设是上的点,且平面,求的值。 2012辽宁(18)(本小题满分12分)如图,直三棱柱,AA=1,点M,N分别为和的中点。 ()证明:平面; ()求三棱锥的体积。(椎体体积公式V=Sh,其中S为地面面积,h为高)【答案及解析】2012,北京(16)(本小题共14分)如图,在中,分别为,的中点,点为线段上的一点,将沿折起到的位置,使,如图()求证:/平面;()求证:;()线段上是否存在点,使平面?说明理由解:()因为,分别为,的中点,所以/又因为平面,所以/平面平面()由已知得且/,所以所
5、以,所以平面而平面,所以又因为,所以平面所以()线段上存在点,使平面理由如下:如图,分别取,的中点,则/又因为/,所以/所以平面即为平面由()知,平面,所以又因为是等腰三角形底边的中点,所以所以平面从而平面故线段上存在点,使得平面2012天津17.(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,ADPD,BC=1,PC=2,PD=CD=2.(I)求异面直线PA及BC所成角的正切值;(II)证明平面PDC平面ABCD;(III)求直线PB及平面ABCD所成角的正弦值。18(本题满分12分)如图,已知直三棱柱ABCA1B1C1, , ,E、F分别是棱CC1、AB中点 (1)判
6、断直线CF和平面AEB1的位置关系,并加以证明; (2)求四棱锥AECBB1的体积(1)解:CF/平面AEB1, 2分证明如下:Zxxk取AB1的中点G,联结EG,FG分别是棱AB、AB1中点 4分又 四边形FGEC是平行四边形 又平面AEB,平面AEB1, 平面AEB1。 6分 (2)解:三棱柱ABCA1B1C1是直棱柱,平面ABC, 又平面ABC 平面ECBB1 是棱CC1的中点, 12分(本小题满分12分) 如图,三棱锥ABPC中,APPC,ACBC,M为AB中点,D为PB中点,且PMB为正三角形.()求证:DM/平面APC;()求 证:平面ABC平面APC;()若BC=4,AB=20,
7、求三棱锥DBCM的体积. 解:()M为AB中点,D为PB中点,MD/AP, 又MD平面ABCDM/平面APC 3分 ()PMB为正三角形,且D为PB中点。MDPB 又由()知MD/AP, APPB 又已知APPC AP平面PBC,APBC, 又ACBC BC平面APC, 平面ABC平面PAC 8分()AB=20MB=10 PB=10又BC=4,又MDVD-BCM=VM-BCD=12分【2012高考全国文19】(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥中,底面为菱形,底面,是上的一点,。()证明:平面;()设二面角为,求及平面所成角的大小。 解析:【命题意图】本试题主要是考查了
8、四棱锥中关于线面垂直的证明以及线面角的求解的运用。从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。解:设,以为原点,为轴,为轴建立空间直角坐标系,则设。()证明:由得, 所以,所以,。所以,,所以平面;() 设平面的法向量为,又,由得,设平面的法向量为,又,由,得,由于二面角为,所以,解得。 所以,平面的法向量为,所以及平面所成角的正弦值为,所以及平面所成角为.27.【2012高考安徽文19】(本小题满分 12分)如图,长方体中,底面是正方形,是的中点,是棱上任意一点。()证明: ;()如果=2,=,,,求 的长。【解析】(I)连接,共面 长方体中,底面是正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 立体 几何 大题题
限制150内