《正多边形和圆(3页).doc》由会员分享,可在线阅读,更多相关《正多边形和圆(3页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-24.3正多边形和圆的学案班级: 主备教师:王国鑫 备课组长: 领导批阅: 上课时间: 年 月 日教师寄语:学习目标:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形 重(难)点预见:应用多边形和圆的有关知识计算及画多边形学习流程: 一、生读目标二、自学指导:1.复习 (1)什么叫正多边形? (2)从你身边举出两三个正多边形的实例,正多边形具有轴对称、中心对称吗?其对称轴有几条,对称中心是哪一点? 2、自主学习: 自学教材104- 105页 思考下列问题: 1、 正多边形和圆有什么关系? 只要把一个圆分成 的一些弧,就可以
2、作出这个圆的 ,这个圆就是这个正多边形的 。 2、 通过教材图形,识别什么叫正多边形的中心、正多边形的中心角、正多边形的边心距? 3、 计算一下正五边形的中心角时多少?正五边形的一个内角是多少?正五边形的一个外角是多少?正六边形呢? 4通过上述计算,说明正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?5、 如何利用等分圆弧的方法来作正n边形? 方法一、用量角器作一个等于 的圆心角。方法二、正六边形、正三角形、正十二边形等特殊正多边形的作法?三、自学检测:1如图1所示,正六边形ABCDEF内接于O,则ADB的度数是( )A60 B45 C30 D225 (1)
3、(2) (3)2圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则APB的度数是( ) A36 B60 C72 D1083若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为( ) A18 B36 C72 D1444已知正六边形边长为a,则它的内切圆面积为_5如图2,在ABC中,ACB=90,B=15,以C为圆心,CA长为半径的圆交AB于D,若AC=6,则AD的长为_6四边形ABCD为O的内接梯形,如图3所示,ABCD,且CD为直径,如果O的半径等于r,C=60,那图中OAB的边长AB是_;ODA的周长是_;BOC的度数是_7、如图所示,已知O的周长等于6cm,求
4、以它的半径为边长的正六边形ABCDEF的面积四、当堂训练:1已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积 ( 分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OMAB垂于M,在RtAOM中便可求得AM,又应用垂径定理可求得AB的长正六边形的面积是由六块正三角形面积组成的 ) 2 利用你手中的工具画一个边长为3cm的正五边形3.教材105页练习1、2(口答)4.抢答题:1、O是正ABC的中心,它是ABC的圆与圆的圆心。2、OB叫正ABC的,它是正ABC的圆的半径。3、OD叫作正ABC的,
5、它是正ABC的 圆的半径。4、正方形ABCD的外接圆圆心O叫做正方形ABCD的5、正方形ABCD的内切圆的半径OE叫做正方形ABCD的6、O是正五边形ABCDE的外接圆,弦AB的弦心距OF叫正五边形ABCDE的,它是正五边形ABCDE的圆的半径。7、 AOB叫做正五边形ABCDE的角,它的度数是8、图中正六边形ABCDEF的中心角是。它的度数是9、你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?五、归纳小结 本节课应掌握: 1正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距 2正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系 教学反思:1、适当增加了正多边形的内切圆的内容;2、课本例题中用到了“正多边形的面积等于周长与边心距之积的二分之一”,在教学中让学生进行了论证。24.3正多边形和圆作业纸设计:王国鑫 班级 姓名1.教材105页练习3,解:2、教材117页习题24.3第1题。(把计算结果填在表格里)3、教材108页习题24.3第5、6题4、教材118页习题24.3拓广探索第8题二次备课错题更正-第 4 页-
限制150内