高考数学总复习专题圆锥曲线分项练习文.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高考数学总复习专题圆锥曲线分项练习文.doc》由会员分享,可在线阅读,更多相关《高考数学总复习专题圆锥曲线分项练习文.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题09 圆锥曲线一基础题组1.【2005天津,文6】设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( )(A)2 (B) (C) (D)【答案】C【解析】双曲线的两条渐进线是:。根据题意:,从而,本题答案选C2.【2006天津,文8】椭圆的中心为点它的一个焦点为相应于焦点F的准线方程为则这个椭圆的方程是( )(A)(B)(C)(D)【答案】D3.【2007天津,文7】设双曲线的离心率为,且它的一条准线及抛物线的准线重合,则此双曲线的方程为()【答案】D4.【2008天津,文7】设椭圆(,)的右焦点及抛物线的焦点相同,离心率为,则此椭圆的方程为(A) (B)
2、 (C) (D)【答案】B【解析】抛物线的焦点为,椭圆焦点在轴上,排除A、C,由排除D,选B5.【2009天津,文4】设双曲线(a0,b0)的虚轴长为2,焦距为,则双曲线的渐近线方程为( )A. B.y2x C. D.【答案】C【解析】由题意知:2b2,则可求得,则双曲线方程为:,故其渐近线方程为.6.【2010天津,文13】已知双曲线 (a0,b0)的一条渐近线方程是yx,它的一个焦点及抛物线y216x的焦点相同,则双曲线的方程为_【答案】【解析】7.【2011天津,文6】已知双曲线的左顶点及抛物线的焦点的距离为4,且双曲线的一条渐近线及抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距
3、为A. B. C. D. 【答案】B【解析】由题意知,抛物线的准线方程为,所以,又,所以,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为,即,所以,即,选B.8.【2012天津,文11】已知双曲线C1:(a0,b0)及双曲线C2:有相同的渐近线,且C1的右焦点为F(,0),则a_,b_【答案】12【解析】C1及C2的渐近线相同,又C1的右焦点为F(,0),即a2b25a21,b24,a1,b29.【2013天津,文11】已知抛物线y28x的准线过双曲线(a0,b0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为_答案【解析】抛物线y28x的准线为x2,则双曲线的一个
4、焦点为(2,0),即c2,离心率e2,故a1,由a2b2c2得b23,所以双曲线的方程为.10.【2014天津,文6】已知双曲线的一条渐近线平行于直线双曲线的一个焦点在直线上,则双曲线的方程为( )A. B. C. D.【答案】A【解析】A考点:双曲线的渐近线11. 【2015高考天津,文5】已知双曲线的一个焦点为,且双曲线的渐近线及圆相切,则双曲线的方程为( )(A) (B) (C) (D) 【答案】D【解析】由双曲线的渐近线及圆相切得,由,解得,故选D.【考点定位】圆及双曲线的性质及运算能力.12.【2016高考天津文数】已知双曲线的焦距为,且双曲线的一条渐近线及直线 垂直,则双曲线的方程
5、为(A) (B)(C) (D)【答案】A【解析】【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论若双曲线的焦点不能确定时,可设其方程为Ax2By21(AB0)若已知渐近线方程为mxny0,则双曲线方程可设为m2x2n2y2(0)二能力题组1.【2011天津,文18】18.(本小题满分13分)设椭圆的左、右焦点分别为,点满足.()求椭圆的离心率;()设直线及椭圆相交于A,B
6、两点.若直线及圆相交于M,N两点,且|MN|=|AB|,求椭圆的方程.【答案】(1) (2) 2.【2012天津,文19】已知椭圆ab0),点P(,)在椭圆上(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点若点Q在椭圆上且满足|AQ|AO|,求直线OQ的斜率的值【答案】();()【解析】解:(1)因为点P(,)在椭圆上,故,可得于是,所以椭圆的离心率(2)设直线OQ的斜率为k,则其方程为ykx,设点Q的坐标为(x0,y0)由条件得消去y0并整理得由|AQ|AO|,A(a,0)及y0kx0,得(x0a)2k2x02a2,整理得(1k2)x022ax00,而x00,故,代入,整理得(1
7、k2)24k24由(1)知,故(1k2)2k24,即5k422k2150,可得k25所以直线OQ的斜率3.【2013天津,文18】设椭圆(ab0)的左焦点为F,离心率为,过点F且及x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线及椭圆交于C,D两点若8,求k的值【答案】();()【解析】解:(1)设F(c,0),由,知. (2)设点C(x1,y1),D(x2,y2),由F(1,0)得直线CD的方程为yk(x1),由方程组消去y,整理得(23k2)x26k2x3k260.求解可得x1x2,x1x2.因为A(,0),B(,0),所
8、以(x1,y1)(x2,y2)(x2,y2)(x1,y1)62x1x22y1y262x1x22k2(x11)(x21)6(22k2)x1x22k2(x1x2)2k2.由已知得8,解得k.4.【2014天津,文18】设椭圆的左、右焦点分别为,,右顶点为A,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点,经过点的直线及该圆相切及点M,=.求椭圆的方程.【答案】(1) (2) 【解析】,因为点P在椭圆上,故,消可得,而点P不是椭圆的顶点,故,即点P的坐标为设圆的圆心为,则再由得,即所以所求椭圆的方程为试题解析:解(1)设椭圆右焦点的坐标为(c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 复习 专题 圆锥曲线 练习
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内