整除的性质和特征(5页).doc
《整除的性质和特征(5页).doc》由会员分享,可在线阅读,更多相关《整除的性质和特征(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-整除的性质和特征整除问题是整数内容最基本的问题。理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。整除属于除尽的一种特殊情况。二、整除的五条基本性质:(1)如果a与b都能被c整除,则a+b与a-b也能被c整除;(2)如果a能被b整除,c是任意整数,则积ac也能被b整除;(3)如果a能被b整除,b能被c整除,则积a也能被c整除;(4)如果a能同时被b
2、、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;(5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。三、一些特殊数的整除特征:根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。(1)如果一个数是整十数、整百数、整千数、的因数,可以通过被除数末尾几位数字确定这个数的整除特征。若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除;若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;若一个整数的百位、十位和个位数字组成的三位数是8或125的
3、倍数,则这个数能被8或125整除。【推理过程】:2、5都是10的因数,根据整除的基本性质(2),可知所有整十数都能被10、2、5整除。任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质(1),则这个数能被2或5整除。又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质(1),可以推导出上面第条、第条整除特征。同理可证,若一个数的末四位
4、数能被16或625整除,则这个数能被16或625整除,依此类推。(2)若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除。【推理过程】:因为10、100、1000除以9都余1,所以几十、几百、几千除以9就余几。因此,对于任意整数ABCDE(_)都可以写成下面的形式(n为任意整数):9n(ABCDE)9n一定能被3或9整除,根据整除的基本性质(1),只要这个数各位上的数字和(ABCDE)能被3或9整除,这个数就能被3或9整除。(3)用“截尾法”判断整除性。截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;截尾减1法:若一个整数截去
5、个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除。根据整除的基本性质(3),以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止。【推理过程】:设任意一个整数的个位数字为y,这个数可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整除 性质 特征
限制150内