苏教版小学数学五年级下册教材分析.doc





《苏教版小学数学五年级下册教材分析.doc》由会员分享,可在线阅读,更多相关《苏教版小学数学五年级下册教材分析.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、苏教版小学数学五年级下册教材分析主讲:华罗庚实验学校 马金花数及代数领域第一单元 方程【知识梳理】学生已学完整数、小数的认识、四则混合运算,会较多的数量关系式,学会用字母表示数。方程作为一种重要的数学思想方法,对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。是学生进一步学习数学和其它学科的重要基础。第一次教学方程,涉及的基础知识比较多,教学内容分成三部分编排。例1、例2:教学等式的含义及方程的意义,根据直观情境里的等量关系列方程。例3例7:教学等式的性质,解方程,列方程解答一步计算的实际问题。整理及练习:理清知识脉络,建立合理的认知结构,提高列方程解决实际问题的意
2、识及能力。(合计建议课时)【具体解读】1、从等式到方程,逐步构建新的数学知识。方程是等式里的一类特殊对象,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。其中要注意的是:教材使用了“质量”这个词。质量及重量是不同的。质量是指含有多少物质,所以质量是不变的。重量是由于物体受到重力作用产生的,是可以变的,比如在地球上及月球上同一质量的重量也不相同。天平及其它称不同,我们说秤计量物体有多重,天平都说的是计量物体的质量是多少。教学时不要把质量说成重量,但不
3、必作过多的解释。“含有未知数”及“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。教材首先告诉学生: 像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的共同特点是“含有未知数”,也是“等式”。这时,可以让学生对另外两道题写出的50+50=100、x+50100和x+50200不能称为方程的原因作出自己的解释,学生对方程的理解会更深刻。教材接着安排讨论“等式
4、和方程有什么关系”,体会方程是特殊的等式,即方程都是等式,但等式不都是方程。“练一练”的第题,让学生判断的同时,明确这道题里有以x为未知数的等式,也有以y为未知数的等式,使学生对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。注意的是在几个部分数相同时,它们相加用乘法比较简便。如x, x+ x,如果遇到多个相同加数时,可让学生自己说一说。如在关系式:买4本同样的故事书一共要16.8元,列出的
5、方程是4x=16.8。如果少数学生列出的方程16.8x=4也是可以的,但不宜提倡;绝不能列出16.84=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。 2、利用等式的性质解方程。在过去的小学数学教材里,学生是应用四则计算的各部分关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。标准从学生的长远发展和中小学教学的衔接出发,要求小学阶段的学生也要利用等式的性质解方程。因此,本单元安排了关于等式性质的内容,分两段教学: 第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的
6、数,结果仍然是等式。在每一段教学等式的性质以后,都及时让学生运用等式的性质解方程。例3仍然用天平的直观情境来教学等式的性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()20+()。学生在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是
7、等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图及等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且及解方程的方法十分接近。另外,这道例题的8个等式中,有7个让学生在圆圈里填写“=”组成等式,这是引导学生切实关注等式有没有变化。右边的四个等式分别让学生在括号里填出同时加上或减去的数,有利于发现等式的性质。例5教学等式
8、的另一个性质。教学时有两点应注意: 一是让学生正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点学生能够接受。因为前面的教学中,已经多次提到除数不能是0。例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方
9、程,学生先从图中能得到求x值的启示: 只要在天平的左右两边各去掉10克的砝码。联系等式的性质及方程x+10=50的特点,理解“方程两边都减去10”的道理: 等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让学生联系已有的解方程经验和有关的等式性质,思考“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从学生实际出发,让学生主动学习的教育理念。另外,例4的编写还注意了三点: 一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必须严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导学生根据“左右两边是不是相
10、等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。 帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号, 引导学生正确应用等式的性质,体会解方程的策略和思路,理出解方程的关键步骤。学生在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,帮助他们正确掌握方程的两边同时加上或
11、同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。第8页“练一练”第1题、第10页第2题的编排意图及上面相同。 3、列方程解决实际问题。本单元解决的都是一步计算的实际问题。列方程解决实际问题的关键是找到问题里的等量关系。列方程时的数量关系及列算式时明显不同。列算式时的数量
12、关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。而列方程的数量关系,把已知和未知融合起来,共同参及运算。在寻找等量关系的时候要注意两点: 一是联系生活经验,按照事情的发生及发展线索,理顺数量关系。如买1件上衣和1条裤子一共用去86元,原有的图书借出56本还剩60本,付出的钱数减电话机的价钱得找回的钱数,妈妈的岁数减小红的岁数得妈妈比小红大的岁数。有了这些等量关系,列方程就方便了。二是暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。教学解方程的时候,渗透列方程解决实际问题的思
13、想。例4求天平左边正方体的质量,例6求长方形试验田的宽,都是先列出方程再求解。这两道例题的教学重点是应用等式性质解方程,以实际问题为载体有两点好处: 一是初步体会列方程是解决实际问题的一种方法,从而发展解决问题的策略;二是继续体会列方程的依据是实际问题里的等量关系。例4的相等关系是天平两边物体的质量相等,学生已经比较熟悉。例6依据长方形面积公式列方程,是对等量关系的一次引导。教学的时候,既不要冲淡例题的教学重点,又要让学生获得这两点体会。例7首次教学列方程解决实际问题,有三个内容: 一是怎样寻找数量间的相等关系,二是这个问题为什么列方程解答,三是列方程解决实际问题的步骤及格式。这三个内容中,第
14、一个最重要,另两个内容都能在第一个内容中得到启示。这道例题的相等关系是从“小刚比小军少跳0.06米”得出的,把文字叙述的相差关系改变成数学式子表示的相等关系,就列出了方程。在这里要注意列方程解决实际问题的一般步骤:“写设句列方程解方程-检验写答”。特别要提醒学生规范地写设句,自觉得进行检验。在交流中让学生思考还可以怎样列方程,对学生的多种解法,教材对此表示肯定,但并不要求学生一题多解。“试一试”辅助学生寻找相等关系,在分析“蓝鲸的体重是一头非洲象的33倍”这个条件的基础上,以填空的形式得出等量关系。其他解题活动由学生独立完成,逐渐熟悉列方程解决实际问题的一般步骤。例7和相配合的“试一试”“练一
15、练”教学列方程解决实际问题,主要解决相差关系和倍数关系的问题。这些实际问题里都有一个关于“相差多少”或“几倍”的已知条件,只要抓住这个条件分析相差数或倍数的具体含义,就能找到实际问题里的等量关系。练习中涉及的等量关系有了扩展,如平行四边形的面积公式、长方形有、正方形的周长公式、单价数量=总价等,要尽量让学生独立寻找和应用等量关系列方程。教材在整理及练习中,还安排探索及实践的问题,提高学生探索规律的能力,体会初步的数学模型思想。像13页的第8题,分四步引导学生探索并运用规律:第一步,先写出3组连续的自然数,分别求和;第二步,引导学生说说发现了什么规律,用语言表达这一数学模型;第三步,直接运用发现
16、的规律列方程解决问题;第四步,拓展规律,运用连续5个奇数的和及中间数的关系,列方程解决问题。【错误及困难分析】、学生一开始解方程时不能正确书写格式,等号不能对齐。算出结果后,不能正确进行检验。、列方程解应用题时没确定等量关系式就开始写设句,设句不完整,算出结果后会不自觉地加单位。、不能根据关键句找到正确的等量关系式。许多发展性的关系式有所遗忘。这都需要教师在平时的教学中加以强调及练习,我以前的教学是要求每人解完方程后把检验的过程也写下来。列方程解应用题之前先写出数量关系式。慢慢地让学生形成习惯达到一定的技能。【精彩课例推荐】南京师范大学附属小学 贲友林“方程”教学设计及说明 (江苏省2009年
17、小学数学优秀课评比二等奖)认识方程教学设计,包括上课视频“列方程解题”教学实录及评析,大家可以到“小学数学教学网”上去查看。第三单元 公倍数和公因数【知识梳理】在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。例、例:教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。例、例:教学公因数。包括两个数的公因数、最大公因数的意
18、义,求最大公因数的方法。在练习五里还安排了最小公倍数及最大公因数的比较。实践及综合应用:利用邮政编码、身份证号码等实例,教学用数字编码表示信息。在“你知道吗”里,介绍了我国古代曾经用“辗转相除法”求最大公因数,也介绍了现代人们经常用“短除法”求两个数的最大公因数和最小公倍数。在阅读这篇材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。【具体解读】1、借助操作活动,经历概念的形成过程。以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公
19、倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。看例,教学时应让学生经历下面几个环节:第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正
20、方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是又是”即“公有”。第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通
21、过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。2、提倡思考方法多样化,让学生探索找公倍数和公因数。本单元只教学两个数的公倍数、最小公倍数和两个数的公因数、最大公因数。因为这些是最基础的数学知识,在约分和通分时应用最多。只要这些基础知识扎实,即使遇到三个分数的通分,学生也能灵活处理。本单元要求在1100的自然数中,能找出10以内两个自然数的公倍数和最小
22、公倍数,二是只要求在1100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。比如例,8和12的公因数有哪些?最大公因数是几?学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或者先找出12的因数,再从中找出8的因数。可
23、以让学生理解各种方法的个性特点,从中作出自己的选择。在找出公倍数或公因数之后,引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。对于两个数有特殊关系时的最小公倍数和最大公因数,如25页的第5题,29页的第6题,教材在练习中引导学生探索简单的规律。如25页的第5题是在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数及因数关系,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。练习五第6题是初步会求两个数的最大公因数后安排的。左边色块里,每
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版 小学 数学 年级 下册 教材 分析

限制150内