整体思想解题(一)(5页).doc
《整体思想解题(一)(5页).doc》由会员分享,可在线阅读,更多相关《整体思想解题(一)(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-整体思想解题(一)-第 5 页整体思想解题策略(一)一、教学目标:1、通过学习掌握数学解决问题的基本方式之一,整体代入法;2、让学生掌握将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后代入的方法二、教学重点与难点整体思想方法在代数式的化简与求值、解方程(组)等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理等都是整体思想方法在解数学问题中的具体运用三、教学过程(一)数与式中的整体思想【例1】 已知代数式3x24x+6的值为9,则的值为 ( )A18 B12 C9 D7相应练习:1. 若代数式的值为7,那么代数式的值等于( )A2 B
2、3 C2 D42.若3a2-a-2=0,则 5+2a-6a2= 3. 先化简,再求值,其中a满足a22a1=0总结:此类题是灵活运用数学方法解题技巧求值的问题,首先要观察已知条件和需要求解的代数式,然后将已知条件变换成适合所求代数式的形式,运用主题带入法即可得解。【例2】.已知,则的值等于( ) A. B. C. D.分析:根据条件显然无法计算出,的值,只能考虑在所求代数式中构造出的形式,再整体代入求解【例3】已知,求多项式的值总结:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化【例4】逐步降次代入
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整体 思想 解题
限制150内