七年级下册数学一元一次方程应用题归类集锦(经典)1(6页).doc
《七年级下册数学一元一次方程应用题归类集锦(经典)1(6页).doc》由会员分享,可在线阅读,更多相关《七年级下册数学一元一次方程应用题归类集锦(经典)1(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-七年级下册数学一元一次方程应用题归类集锦(经典)1-第 6 页一元一次方程应用题归类汇集考点1:一元一次方程的概念例1.若关于x的方程是一元一次方程,则m的值是()A.B. 6C. 6D. 4解析:由一元一次方程的定义得,且,解得,故选C。点评:这道题考查一元一次方程的概念,我们需要熟练掌握概念,灵活把握概念的特征,根据概念的特征逐条检查题目所给条件。考点2:方程的解的定义例2.已知关于x的方程的解是,则a的值为()A. 1B.C.D.解析:根据方程的解的定义,一元一次方程的解能使方程中等号左右两边的值相等,把代入原方程,得到一个关于a的一元一次方程,解这个方程即可得到a的值。把代入原方程,
2、可得,化简得,解得,所以选A。点评:根据方程的解的定义,直接把方程的解代入即可,需要注意的是,方程的解和解方程是不同的概念,方程的解实质上是求得的结果,而解方程是指求出方程的解或判断方程无解的过程,方程的解的检验方法:把未知数的值分别代入方程中等号左右两边进行求值,比较两边的值是否相等,从而得出结论。考点3:等式的性质考点4:一元一次方程的解法例3.解下列方程。(1)。(2)。解析:第(1)题显然要去分母进行求解,第(2)题可以选择由外向内去括号,这样可以轻松去掉大括号和中括号,既简化了解题过程,又能避免一些常见的解题错误。(1)去分母,得。去括号,得。移项、合并,得。系数化为1,得。(2)去
3、大括号,得。去中括号,得。去小括号、移项、合并,得。系数化为1,得。点评:解方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1。考点5:一元一次方程的应用一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系)(2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案(注意带上单位)二、各类题型解法分析(一)和、差、倍
4、、分问题读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。2、多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。增长量原有量增长率 现在量原有量增长量例某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25
5、%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9),则这个三位数表示为:100a+10b+c2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n1表示。例有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。例
6、一个2位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个2位数的 大6,求这个2位数。(三)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。(2)利润问题常用等量关系:商品利润商品售价商品进价商品标价折扣率商品进价商品售价商品标价折扣率商品利润率100%100%(3)商品销售额商品销售价商品销售量商品的销售利润(销售价成本价) 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售即商品售价=商品标价折扣率例: 一家商店将某种服装按进价提高40%后标价,又
7、以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?练习1:某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?练习2:甲、乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?练习3:某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。问这种鞋的标价是多少元?优惠价是多少?(四)行程问题画图分析法利用图形分析数学
8、问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程速度时间 时间路程速度 速度路程时间2.行程问题基本类型(1)相遇问题: (2)追及问题: (3)航行问题:顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度水流速度=(顺水速度-逆水速度)2抓住两码头间距离不变、水流速和船速(静不速)不变的特点考虑相等关系即顺水逆水问题常用等量关系:
9、顺水路程=逆水路程常见的还有:相背而行;行船问题;环形跑道问题。考虑车长的过桥或通过山洞隧道问题:将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。一般行程问题:追击与相遇问题例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 一元一次方程 应用题 归类 集锦 经典
限制150内