五年级奥数流水问题问题(16页).doc
《五年级奥数流水问题问题(16页).doc》由会员分享,可在线阅读,更多相关《五年级奥数流水问题问题(16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-五年级奥数流水问题问题-第 16 页 个性化教案 (内部资料,存档保存,不得外泄)学生姓名: 年级: 五 科目: 奥数 授课日期: 月 日上课时间: 时 分 - 时 分 合计: 小时授课内容: 流水问题 一、顺水速度,逆水速度,船速,水速之间的关系 二、几种典型例题选讲(运用公式) 三、争对性练习巩固 四、错题及难题回顾 五、总结方法 授课教师评价: 准时上课:无迟到和早退现象(今日学生课堂表 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共 项) 上课态度认真:上课期间认真听讲,无任何不配合老师的情况(大写) 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现
2、象 学生签字:教师签字:备注:请交至行政前台处登记、存档保留,隔日无效 (可另附教案内页) 大写:壹 贰 叁 肆 签章:海豚教育个性化简案 个性化教案 (内部资料,存档保存,不得外泄) 海豚教育个性化教案 编号: 流水行船问题的公式和例题 流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。流水问题有如下两个基本公式:顺水速度=船速+水速 (1)逆水速度=船速-水速 (2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是
3、指水在单位时间里流过的路程。公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速 (3)船速=顺水速度-水速 (4)由公式(2)可得:水速=船速-逆水速度 (5)船速=逆水速度+水速 (6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。另外,已知某船的逆水速度和
4、顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)2 (7)水速=(顺水速度-逆水速度)2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:255=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。5-1=4(千米/小时)综合算式:255-1=4(千米/小时)答:此船在静水中每小时行4千米。*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度
5、是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:124=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。*例3 一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)解:因为船在静水中的速度=(顺水速度+逆水速度)2,所以,这只船在静水中的速度是:(20+12)2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)2,所以水流的速度是:(20-12)2=4(千米/小时)答略。*例4 某船在静水中每小时行18千米,水流速度是每小时2千米。此船从
6、甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的路程是:1615=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:24020=12(小时)答略。*例5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:188=144(千米)此船逆水航行的速度是:15-3=12
7、(千米/小时)此船从乙港返回甲港需要的时间是:14412=12(小时)综合算式:(15+3)8(15-3)=14412=12(小时)答略。*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)解:顺水而行的时间是:144(20+4)=6(小时)逆水而行的时间是:144(20-4)=9(小时)答略。*例7 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6.5小时行驶260千米。求这只船沿岸边返回原地需
8、要多少小时?(适于高年级程度)解:此船顺流而下的速度是:2606.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地需要的时间是:26026=10(小时)综合算式:260(2606.5-8-6)=260(40-8-6)=26026=10(小时)答略。*例8 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。顺水行150千米需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:12000024=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/
9、小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:15000010000=15(小时)综合算式:150000(12000024+25002)=150000(5000+5000)=15000010000=15(小时)答略。*例9 一只轮船在208千米长的水路中航行。顺水用8小时,逆水用13小时。求船在静水中的速度及水流的速度。(适于高年级程度)解:此船顺水航行的速度是:2088=26(千米/小时)此船逆水航行的速度是:20813=16(千米/小时)由公式船速=(顺水速度+逆水速度)2,可求出此船在静水中的速度是:(26+16)2=21(千米/小
10、时)由公式水速=(顺水速度-逆水速度)2,可求出水流的速度是:(26-16)2=5(千米/小时)答略。*例10 A、B两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水行全程用几小时?(适于高年级程度)解:甲船逆水航行的速度是:18018=10(千米/小时)甲船顺水航行的速度是:18010=18(千米/小时)根据水速=(顺水速度-逆水速度)2,求出水流速度:(18-10)2=4(千米/小时)乙船逆水航行的速度是:18015=12(千米/小时)乙船顺水航行的速度是:12+42=20(千米/小时)乙船顺水行全程要用的时间是:18020=9
11、(小时)综合算式:18018015+(18010-18018)23=18012+(18-10)22=18012+8=18020=9(小时)1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港。从乙港返航需要6小时,求船在静水中的速度和水流速度?分析:逆流而行每小时行12千米,7小时时到达乙港,可求出甲乙两港路程:12784(千米),返航是顺水,要6小时,可求出顺水速度是:84614(千米),顺速逆速2个水速,可求出水流速度(1412)21(千米),因而可求出船的静水速度。解: (127612)2221(千米)12113(千米)答:船在静水中的速度是每小时13千米,水流速度是每小时1千米
12、。2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。这只船在甲、乙两港之间往返一次,共用去6小时。求甲、乙两港之间的航程是多少千米?分析:1、知道船在静水中速度和水流速度,可求船逆水速度 15510(千米),顺水速度15520(千米)。2、甲、乙两港路程一定,往返的时间比与速度成反比。即速度比 是 10201:2,那么所用时间比为2:1 。3、根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为 6(21)24(小时),再根据速度乘以时间求出路程。解: (155):(155)1:26(21)26324(小时)(155)410440(千米)答:甲、乙两港之间的航程是40千米
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 流水 问题 16
限制150内