不同坐标系的转换及其程序设计_毕业论文(29页).doc
《不同坐标系的转换及其程序设计_毕业论文(29页).doc》由会员分享,可在线阅读,更多相关《不同坐标系的转换及其程序设计_毕业论文(29页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-不同坐标系的转换及其程序设计_毕业论文-第 23 页江苏 师 范 大 学本科生毕业论文(设计)论 文 题 目: 不同坐标系的转换及其程序设计 院 系: 测绘学院 专 业: 测绘工程 江苏师范大学教务处印制摘 要随着空间技术的发展,全球一体化的形成,越来越多的要求全球测绘资料形成统一规范,尤其是坐标系统的统一。由于各测量单位工作目的不同,所选择的椭球参考系也会有所不同,出现了许多不同形式的坐标系,例如WGS-84坐标系、国家80坐标系、北京54坐标系、独立地方坐标及各种坐标。在同一坐标系下坐标的表示方式又有空间直角坐标、大地坐标、平面坐标。根据不同的测绘需求,需要将不同的坐标系下的坐标进行相互
2、转换,在这些坐标转换的过程中既会运用到同一坐标系下的坐标转换模型,又会用到不同参考系下各坐标系间的坐标转换模型。 首先本文介绍大地测量学坐标的相关知识,接着介绍了与坐标转换相关的知识以及坐标转换模型(包括同一坐标系下的坐标转换模型和不同参考系下各坐标系间的坐标转换模型),并利用vb语言实现坐标转换的过程。关键词:地球椭球,坐标系,转换模型,坐标转换AbstractAlong with the development of space technology, the formation of global integration, more and more requirements of su
3、rveying and mapping material form a unified global standard, especially the unity of the coordinate system. Because each measurement unit work purpose is different, choose the frame of reference ellipsoid would differ, the emergence of many different forms of coordinate system, such as WGS-84 coordi
4、nate system, the state 80 coordinate system, Beijing 54 coordinate system, independent local coordinate system and various kinds of urban construction coordinates. In the same coordinate system of representation and coordinate space right-angle coordinate, coordinate, coordinate the earth plane. Acc
5、ording to the different needs of surveying and mapping, need different coordinate transformation coordinate system, in which the process of coordinate transformation can use to the same coordinate system coordinate transformation model, and will use different reference frame, the coordinate transfor
6、mation between the coordinate system model.First of all this paper introduces the geodetic coordinates of relevant knowledge, then introduce the knowledge of coordinate transformation and coordinate transformation model(including the same coordinate system coordinate transformation model and differe
7、nt reference frame, the coordinate transformation between the coordinate system model), and the use of vb language realization of coordinate transformation process.Key words: the earth ellipsoid, coordinate system, transformation model, coordinate transformation摘要IAbstractII1 绪 论11.1研究的背景和意义11.2国内外研
8、究现状11.3研究的主要内容22 相关理论和知识介绍32.1地球椭球32.2 基准42.3建立大地坐标系的基本原理52.3.1椭球定位、定向的概念52.3.2参考椭球定位与定向的实现方法52.3.3多点定位63 坐标系统简介73.1测量常用的坐标系73.1.1大地坐标系73.1.2空间直角坐标系83.1.3平面坐标系83.1.4地方独立坐标系93.2 我国常用的坐标系统93.2.1 1954年北京坐标系103.2.2 1980年国家大地坐标系113.2.3 1954年北京坐标系(整体平差转换值)113.2.4 WGS-84世界大地坐标系123.2.5 2000国家大地坐标系124 坐标转换理论
9、与程序设计144.1坐标转换的基本概念144.2坐标系转换的模型144.2.1同一参考椭球下大地坐标系与空间直角坐标系的相互转换144.3基准转换的模型174.3.1不同地球椭球坐标系的空间三参数或七参数转换175 全文总结20参考文献21附 录22致谢321 绪 论1.1研究的背景和意义随着大地测量学,卫星大地测量学,摄影测量学的发展和电子计算机的普及,对各种坐标系的研究变得越来越重要了。精确地测量,计算和表示点的坐标,为各种比例尺地形图和大型工程测量提供控制,大地坐标系作为大地测量基准的一部分,一直是大地测量中最基本的问题。按其原点相对地球质心的位置,大地坐标系可为局部坐标系和地心坐标系。
10、过去由于科技水平的制约,人类不能精确地确定地心的位置,局部坐标系无疑是国家和地区的惟一选择。应用传统技术建立起来的参心坐标系逐渐难以满足测绘及相关行业发展的需求,甚至在有些应用中完全失去了意义。单纯采用目前参心、二维、低精度、静态的大地坐标系统和相应的基础设施作为中国现行应用的测绘基准,必然会带来越来越多的不协调问题新形势下,测量坐标系问题显得越来越突出,使用地心坐标系的要求也越来越迫切。世界许多发达国家和地区都开始采用地心坐标。信息时代的控制测量仪器和测量系统已形成数字化,智能化和集成化的新发展态势,空间测量和地面测量仪器和测量系统出现互补共荣的新的发展格局;传统的大地测量技术发生了质的变化
11、,传统的测绘行业逐渐向地理信息化产业转换,工作重点已经由外业转为内业处理。在实际测量中由于经济条件和环境条件的的限制,测量工作者在选取坐标系的时候往往会正对实际情况选着最实用的坐标系,这就对软件提出了新的要求,需要数据处理的时候进行转换。由于各种转换模型的相继推出,对我们测量工作者来说,了解这些转换的原理和数据的处理的过程方法是必要的。1.2国内外研究现状自60年代以来,各国大地测量学者,经过大量研究,提出了多种坐标转换模型及多种解算方法, 北美1927基准面(基于克拉克1966椭球体与北美1983基准面(基于GRS1980椭球体)之间坐标转换是根据研究区内一系列已知点的大地坐标或网格坐标改正
12、量进行插值进行的坐标系转换;英国采用北向与东向的双线性网格插值进行坐标转换;挪威在海岸带调查中,采用经纬度多项式用于坐标系转换这种方法进行新(ED87欧洲1987基准面)、旧(ED50欧洲1950基准面)坐标系之间的转换;欧洲石油勘探组织(EPSG)对新、旧坐标系采用“双线性插值”进行坐标转换。在国内空间三维直角坐标转换中,通常采用7参数布尔沙沃尔夫模型、莫洛金斯基模型和范式模型,并且刘经南院士和其同事在对这三种传统转换模型进行分析的基础上,从理论和实践上证明了这三个模型的等价性,并在此基础上他还提出了第4个等价模型“武测模型”,这些模型虽然表示形式上略有差异,但从坐标转换的最终结果而言,他们
13、是等价的。1.3研究的主要内容测量坐标转换问题在测量工程中经常遇到,其计算过程比较繁琐,采用手动计算式相当麻烦,国内的许多坐标软件都有一个缺点操作界面过于复杂,操作起来也很繁琐,为了提高软件的交互性和实用性,我采用VB实现这一目的。本文首先介绍研究的背景和意义,国内外研究现状,接着对国内外有关空间三维直角坐标系做了系统概述,接着介绍了与坐标转换相关的知识以及坐标转换模型,并用VB设计了相关程序,最后是全文总结。2 相关理论和知识介绍由于当今世界上有着有许多的参心坐标系和地心坐标系等,所以对于地球表面上的任一一点P,表述改点坐标的方式有很多。因此对于地面上一点,由于所选择的坐标系不同,其表达方式
14、也会不同。而且,即使使用同一坐标系,也会有不同的表达方式。想要弄清楚它们之间的联系,那么就会涉及到坐标转换的问题。坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及同一坐标系下的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的坐标转换等。2.1地球椭球由于地球内部质量分布不均,导致大地体其实是一个不平的似球体,经过长期的理论研究和实践认为,当一个通过南北两极的子午圈,绕地球南北极旋转一周而形成一个椭球体,用这个椭球面来代替大地水准面,是一个很理想的计算基准面。一个与大地体符合最好,最接近地球大小和形
15、状的旋转椭球,称为总地球椭球体。其具体条件为:1.总地球椭球体的体积与大地体的体积一致,而且其表面与大地水准面之间的差距的平方和最小。2.总地球椭球体的总质量与地球的总质量一致,而且其中心与地球重心相重合,总地球椭球的赤道面也应该与地球的赤道一致。3.总地球椭球体的旋转角速度与地球的旋转角速度一致。在众多椭球体中,WGS-84椭球体被认为符合上述条件最好的椭球,由于经典大地测量技术存在一定的局限性,大地测量工作者算出一个涵盖整个大陆和海洋的总地球椭球,而是根据本国的测绘成果推求出一个最能表达本国或者是本地区的地球椭球体,就是所谓的参考椭球。地球表面、大地水准面和椭球面三者的关系及偏差如下图所示
16、图2-1 地球三个面及其偏差2.2 基准所谓基准是指为描述空间位置而定义的点线面。而大地测量基准是指用以描述地球形状的地球椭球参数,包含描述地球椭球几何特征的长短半轴和物理特征的有关参数、地球在空间的定位及定向以及描述这些位置所采用的单位长度的定义。不同的坐标系统会使用的基准也不同。在大地测量中,根据参考椭球所选原点位置不同,可以分为地心坐标系和参心坐标系。地心坐标系是以地球的质心为原点,同样有地心大地坐标系和地心空间直角坐标系两种表述方法。地心空间直角坐标系的定义为:以地球质心为原点,X轴指向格林尼治子午面与地球赤道的交点,Z轴指向北极,Y轴过原点垂直于平面XOZ,构成右手空间直角坐标系。地
17、心大地坐标系定义为:以地球的质心作为原点,以地球自转轴作为椭球的短轴,大地纬度B是过地面点的椭球法线与椭球赤道面之间的夹角,大地经度L为过地面点的椭球子午面与格林尼治子午面之间的夹角,大地高度H为地面点沿椭球法线到椭球面的最短距离。参心坐标系是这样定义的:选取一个参考椭球面作为基本的参考面,选一参考点作为大地测量的起算点,并且通过大地的质点来进行测量,从而确定参考椭球在地球面的位置和方向。这时参考椭球的原点一般不会和地球质心重合,所以称为参心。参心坐标主要用于大地测量中,如测量某一地区的控制网等,所以又称局部坐标。它同样具有参心大地坐标系和参心直角坐标系两种表述方法,它们的定义与地心坐标系的定
18、义相似。2.3建立大地坐标系的基本原理2.3.1椭球定位、定向的概念大地坐标系是建立在一定的大地基准上的用于表达地球表面空间位置及其相对关系的数学参照系,这里所说的大地基准是指能够最佳拟合地球形状的地球椭球的参数及椭球定位和定向。椭球定位是确定椭球中心的位置,可分为两类:局部定位和地心定位。局部定位要求在一定范围内椭球面与大地水准面有最佳的符合,而对椭球的中心位置无特殊要求;地心定位要求在全球范围内椭球面与大地水准面有最佳的符合,同时要求椭球中心与地球质心一致或最为接近。椭球定向是指确定椭球旋转轴的方向,不论是局部定位还是地心定位,都应满足两个平行条件:椭球短轴平行于地球自转轴;大地起始子午面
19、平行于天文起始子午面具有确定参数(长半径a和扁率),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球,叫做参考椭球。除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球,叫做总地球椭球。2.3.2参考椭球定位与定向的实现方法建立(地球)参心坐标系,需进行下面几个工作:选择或求定椭球的几何参数(长短半径);确定椭球中心位置(定位);确定椭球短轴的指向(定向);建立大地原点。参考椭球定位定向方法选定某一适宜的点K作为大地原点,在该点上实施精密的天文测量和高程测量,由此得到该点的天文经度 ,天文纬度,至某一相邻点的天文方位角和正高得到K点相应的大地经度
20、,大地纬度 ,至某一相邻点的大地方位角和大地高 (2.1)2.3.3多点定位一点定位的结果在较大范围内往往难以使椭球面与大地水准面有较好的密合。所以在国家或地区的天文大地测量工作进行到一定的时候或基本完成后,利用许多拉普拉斯点(即测定了天文经度、天文纬度和天文方位角的大地点)的测量成果和已有的椭球参数,按照广义弧度测量方程按=最小或=最小)这一条件,通过计算进行新的定位和定向,从而建立新的参心大地坐标系。按这种方法进行参考椭球的定位和定向,由于包含了许多拉普拉斯点,因此通常称为多点定位法。多点定位的结果使椭球面在大地原点不再同大地水准面相切,但在所使用的天文大地网资料的范围内,椭球面与大地水准
21、面有最佳的密合。3 坐标系统简介所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系。3.1测量常用的坐标系3.1.1大地坐标系空间大地坐标系以大地经度L,地纬度B,大地高H来表示空间某一点的位置。地面上P点的大地子午面NPS与起始大地子午面所构成的二面角L,叫做P点的大地经度,有起始子午面起算,向东为正,成为东经,向西为负,称为西经,P点对于椭球的法线PK与赤道面的夹角B,叫做P点的大地纬度,有赤道面起算,向北为正,称为北纬,向南为负,称为南纬,如3-1图所示图3-1 大地坐标示意图P点沿法线到椭球面的距离H,叫
22、大地高,从椭球面起算,向外为正,向里为负。GPS测量出来的高程为大地高,与我们所选要的正常高存在高程异常。大地高H与水准测量中的正常高或正高有以下关系H(大地高)=(正常高)+(高程异常) 图3-2 大地水准面的差距3.1.2空间直角坐标系空间直角坐标系的坐标原点与参考椭球的中心重合,Z轴正向指向参考椭球的北极,X轴正向指向起始子午面与赤道的交点,Y轴按右手系与X轴呈9 0夹角且位于赤道面上。某点在空间中的坐标可用该点在此空间坐标系的各个坐标轴上的投影来表示,如图所示: 图3-3 空间直角坐标系示意图3.1.3平面坐标系平面直角坐标系是利用投影,将空间坐标(空间直角坐标或空间大地坐标)通过某种
23、数学变换映射到平面上,这种变换称为投影变换。投影变换的方法有很多,如Lambuda投影,UTM投影等,在我国一般采用的是高斯一克吕格投影,也称为高斯投影。地形测图以及许多的测量定位应用在现实中是我们常见的平面直角坐标。对于一个国家或较大区域,应按照一定的数学法则将参考椭球面上的各点的大地经纬度投影为平面上相对应点的平面直角坐标。由于地球椭球面是不可展曲面,所以无论采用什么样的投影都会产生一定变形。投影变形一般分为长度变形,角度变形和面积变形这三种。根据制测量的任务和目的应当采用等角投影(又称正形投影)。在采用的正形投影时,还要求长度和面积变形不大,并且能用简单的公式来计算这些变形而带来的改正数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不同 坐标系 转换 及其 程序设计 毕业论文 29
限制150内