人教版高中数学新课标必修一学案(42页).doc
《人教版高中数学新课标必修一学案(42页).doc》由会员分享,可在线阅读,更多相关《人教版高中数学新课标必修一学案(42页).doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人教版高中数学新课标必修一学案-第 41 页1.1.1 集合的含义与表示(1) 学习目标 1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. 学习过程 一、课前准备(预习教材P2 P3,找出疑惑之处)讨论:军训前学校通知:8月15日上午8点,高一年级在学校操场集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?二、新课导学 探索新知探究1:考察几组对象: 120以内所有的质数; 到定点的距离等于定长的所有点;
2、 所有的锐角三角形; 金沙二中高一级全体学生; 方程的所有实数根; 2012年6月,贵州所有出生婴儿.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set).试试1:探究1中都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序
3、性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合 .试试2:分析下列对象,能否构成集合,并指出元素: 不等式的解; 3的倍数; 方程的解; a,b,c,x,y,z; 最小的整数; 周长为10 cm的三角形; 中国古代四大发明; 全班每个学生的年龄; 地球上的四大洋; 地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用 的拉丁字母表示,集合的元素用 的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:aA;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:aA.试试3:
4、 设B表示“5以内的自然数”组成的集合,则5 B,0.5 B, 0 B, 1 B.探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作 ;正整数集:所有正整数的集合,记作 或 ; 整数集:全体整数的集合,记作 ;有理数集:全体有理数的集合,记作 ;实数集:全体实数的集合,记作 .试试4:填或:0 N,0 R,3.7 N,3.7 Z, Q, R.探究5:探究1中分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用
5、花括号“ ”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与a不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示. 典型例题例1 用列举法表示下列集合: 15以内质数的集合; 方程的所有实数根组成的集合; 一次函数与的图象的交点组成的集合.三、总结提升 学习小结概念:集合与元素;属于与不属于;集合中元素三特征;常见数集及表示;列举法. 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.
6、人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日. 学习评价 自我评价 你完成本节学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是().A某个村子里的高个子组成一个集合B所有小正数组成一个集合C集合和表示同一个集合D这六个数能组成一个集合2. 给出下列关系:其中正确的个数为( ).A1个B2个 C3个D4个3. 直线与y轴的交点所组成的集合为( ). A. B. C. D. 4. 设A表示“中国所有省会城市”组成的集合,则: 贵阳 A; 金沙 A. (填或)5.“方
7、程的所有实数根”组成的集合用列举法表示为_. 课后作业 1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程的所有实数根组成的集合.2. 设xR,集合.(1)求元素x所应满足的条件;(2)若,求实数x.1.1.1 集合的含义与表示(2) 学习目标 1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. 学习过程 一、课前准备(预习教材P4 P5,找出疑惑之处)复习1:一般地
8、,指定的某些对象的全体称为 .其中的每个对象叫作 .集合中的元素具备 、 、 特征.集合与元素的关系有 、 .复习2:集合的元素是 ,若1A,则x= .复习3:集合1,2、(1,2)、(2,1)、2,1的元素分别是什么?四个集合有何关系?二、新课导学 学习探究思考: 你能用自然语言描述集合吗? 你能用列举法表示不等式的解集吗?探究:比较如下表示法 方程的根;新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为,其中x代表元素,P是确定条件.试试:方程的所有实数根组成的集合,用描述法表示为 . 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程的所有实数根组成的集合;(2
9、)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程的所有实数根组成的集合;(2)所有奇数组成的集合.例2 试分别用列举法和描述法表示下列集合:(1)抛物线上的所有点组成的集合;(2)方程组解集.变式:以下三个集合有什么区别.(1);(2);(3).三、总结提升 学习小结1. 集合的三种表示方法: 2. 会用适当的方法表示集合; 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:,也可以写成:直角三角形;(2)集合与集合是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn图. 学习评价
10、 自我评价 你完成本节学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 设,则下列正确的是( ). A. B. C. D.2. 下列说法正确的是( ). A.不等式的解集表示为 B.所有偶数的集合表示为 C.全体自然数的集合可表示为自然数 D. 方程实数根的集合表示为3. 一次函数与的图象的交点组成的集合是( ).A.1,-2B.C.D.4. 用列举法表示集合为 5.集合Ax|x=2n且nN,用或填空: 4 A,4 B,5 A,5 B. 课后作业 1. (1)设集合 ,试用列举法表示集合A.(2)设Ax|x2n,nN,且n1
11、0,B3的倍数,求属于A且属于B的元素所组成的集合.2. 若集合,集合,且,求实数a、b.1.1.2 集合间的基本关系 学习目标 1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义. 学习过程 一、课前准备(预习教材P6 P7,找出疑惑之处)复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合:(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N; Q; -1.5 R.(2)设集合,则1 A;b B; A.二、新
12、课导学 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:与;C=金沙二中高中学生与D=金沙二中高一学生;与.新知:子集、相等、真子集、空集的概念. 如果集合A的任意一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset),记作:,读作:A包含于(is contained in)B,或B包含(contains)A.当集合A不包含于集合B时,记作. 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图. 用Venn图表示两个集合间的“包含”关系为: 集合相等:若,则中的元素是一样的,因此. 真子集:若集合,存在元素,则称集合A是集合B
13、的真子集(proper subset),记作:A B(或B A),读作:A真包含于B(或B真包含A). 空集:不含有任何元素的集合称为空集(empty set),记作:. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1) , ;(2) , R;(3)N ,Q N;(4) .反思:思考下列问题.(1)符号“”与“”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论? 若; 若. 典型例题例1 写出集合的所有的子集,并指出其中哪些是它的真子集.变式:写
14、出集合的所有真子集组成的集合.例2 判断下列集合间的关系:(1)与;(2)设集合A=0,1,集合,则A与B的关系如何?变式:若集合,且满足,求实数的取值范围. 动手试试练1. 已知集合,B1,2,用适当符号填空: A B,A C,2 C,2 C.练2. 已知集合,且满足,则实数的取值范围为 .三、总结提升 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法. 知识拓展 如果一个集合含有n个元素,那么它的子集有个,真子集有个. 学习评价
15、 自我评价 你完成本节学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列结论正确的是( ). A. A B. C. D. 2. 设,且,则实数a的取值范围为( ). A. B. C. D. 3. 若,则( ). A. B. C. D. 4. 满足的集合A有 个.5. 设集合,则它们之间的关系是 ,并用Venn图表示. 课后作业 1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A表示合格产品的集合,B表示质量合格的产品的集合,C表示长度合格的产品的集合则下列包含关系哪些成立?试用Venn图表示这三个集合的
16、关系.2. 已知,且,求实数p、q所满足的条件. 1.1.3 集合的基本运算(1) 学习目标 1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 学习过程 一、课前准备(预习教材P8 P9,找出疑惑之处)复习1:用适当符号填空.0 0; 0 ; x|x10,xR;0 x|x5;x|x3 x|x2;x|x6 x|x5.复习2:已知A=1,2,3, S=1,2,3,4,5,则A S, x|xS且xA= .二、新课导学 学习探究探究:设集合,.(1)试用
17、Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集. 一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫作A、B的交集(intersection set),记作AB,读“A交B”,即: A BVenn图如右表示. 类比说出并集的定义.由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集(union set),记作:,读作:A并B,用描述法表示是:A BAVenn图如右表示.试试:(1)A3,5,6,8,B4,5,7,8,则AB ;(2)设A等腰三角形,B直角三角形,则AB ; (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 新课 必修 一学案 42
限制150内