中考数学专题-实际应用问题(7页).doc
《中考数学专题-实际应用问题(7页).doc》由会员分享,可在线阅读,更多相关《中考数学专题-实际应用问题(7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-中考数学专题-实际应用问题-第 7 页课程解读一、学习目标:了解实际应用问题的常见类型,掌握其分析方法和解题思路,能把实际应用问题转化成数学问题。二、考点分析:实际应用问题是中考的必考内容、重点内容,题型包括选择题、填空题和解答题,综合程度较高。实际应用问题主要考查学生收集和处理信息的能力以及探究分析问题和解决问题的创新实践能力。此类问题在中考中所占比例较大,分值一般在20分以上,题目中等偏难。知识梳理1、实际应用问题按知识内容可分为:代数应用题、几何应用题、函数应用题、概率统计应用题等。按现实生产和生活中的应用进行分类,则有成本、价格、利润、存款与贷款、运输、航行、管理与决策、农业生产、生
2、物繁殖等。2、实际应用问题的特点是贴近日常生活,反映市场经济规律,涉及的背景材料十分广泛,这就要求学生学会运用数学知识去观察、分析、概括题目所给的实际问题,将其转化为数学模型来解答。典型例题知识点一:方程型实际应用问题例1:快乐公司决定按如图所示给出的比例,从甲、乙、丙三个工厂共购买200件同种产品A,已知这三个工厂生产的产品A的优品率如下表所示:(1)快乐公司从甲厂应购买多少件产品A;(2)求快乐公司所购买200件产品A的优品率;(3)你认为快乐公司能否通过调整从三个工厂所购买的产品A的比例,使所购买的200件产品A的优品率上升3%。若能,请问应从甲厂购买多少件产品A;若不能,请说明理由。思
3、路分析:1)题意分析:左面表格给出的是各厂的优品率,右面扇形图给出的是从各厂购买产品A的比例。2)解题思路:难点在第(3)问,先假设优品率能上升3%,再设未知数列方程求解。但应注意前提条件,即200件产品A中包含甲、乙、丙三个厂的产品。解答过程:(1)甲厂:20025%50。(2)乙厂:20040%80;丙厂:20035%70。优品率:(5080%8085%7090%)2000.85585.5%。(3)设从甲厂购买x件,从乙厂购买y件,从丙厂购买(200xy)件。则80%x85%y90%(200xy)200(85.5%3%)。即2xy60,又80%x和85%y均为整数。当y0时,x30;当y2
4、0时,x20;当y40时,x10;当y60时,x0。所以从甲厂购买产品20件或10件时,可满足条件。解题后的思考:本题以图文形式提供了部分信息,主要考查学生运用二元一次方程解决实际问题的能力。例2:新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?思路分析:1)题意分析:要理清进价、销售价、利润之间的关系:利润销售价进价。解这个方程得x1x22750。所以,每台冰箱应定价2750元。解题后的思考:用方程解答实际应用
5、问题的关键是理清数量关系,找到相等关系。这道题的等量关系是:每台冰箱的销售利润平均每天销售冰箱的数量5000元。例3:有一种用特殊材料制成的质量为30克的“泥块”,现把它切为大、小两块,将较大的“泥块”放在一架不等臂天平的左盘中,称得质量为27克;又将较小的“泥块”放在该天平的右盘中,称得质量为8克。若只考虑该天平的臂长不等,其他因素忽略不计,请你依据杠杆的平衡原理,求出较大“泥块”和较小“泥块”的质量。思路分析:1)题意分析:由杠杆原理F1L1F2L2可知这架不等臂天平的两臂长分别是杠杆中的动力臂和阻力臂,2)解题思路:我们可设左臂长为L1,右臂长为L2,它们可看作是本题的辅助元,再设较大泥
6、块的质量为x克,较小泥块的质量为y克,由题意可列出三个方程:xy30; xL127L2;8L1yL2。解答过程:设天平左臂长为L1,右臂长为L2,再设较大泥块的质量为x克,较小泥块的质量为y克,由题意可列出方程:xy30;xL127L2;8L1yL2。答:较大泥块的质量为18克,较小泥块的质量为12克。解题后的思考:本题是一道与物理知识紧密相连的实际应用问题,解答这类问题时注意正确运用物理学中的一些公式,如力学、电学、天平平衡公式等。小结:方程是描述现实世界数量关系的最重要的数学语言,也是中考命题所要考查的重点、热点之一。同学们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识,并学
7、会用数学中方程的思想去分析和解决一些实际问题。解答此类问题的方法是:(1)审题,明确未知量和已知量;(2)设未知数,务必写明意义和单位;(3)依题意,找出等量关系,列出方程;(4)解方程,必要时验根。知识点二:不等式型实际应用问题例4:康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台。从A、B两地运往甲、乙两地的费用如下表:甲地(元/台)乙地(元/台)A地600500B地400800(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)的函数关系式;(2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少
8、费用?为什么?思路分析:本题考查函数和不等式这两个知识点解答过程:(1)y600x500(17x)400(18x)80015(18x)500x13300;又在y500x13300中,随x的增大,y也增大,当x3时,y最小50031330014800(元),该公司完成以上调运方案至少需要14800元运费,最佳方案是:由A地调3台到甲地,调14台到乙地,由B地调15台到甲地。解题后的思考:关于不等式的应用往往和函数、方程综合在一起,通过方案设计型问题进行考查,解答这类问题时虽然主要运用不等式的知识,但关键还是要正确地建立方程和函数模型。小结:现实世界中的不等关系是普遍存在的,许多现实问题很难确定(
9、有时也不需要确定)具体的数值。但可以求出或确定这一问题中某个量的变化范围(趋势),从而对所研究问题的概况有一个比较清楚的认识。本讲中我们要讨论的问题是求某个量的取值范围或极端可能性,列不等式时要从题意出发,设好未知量后,用心体会题目所规定的实际情境,从中找出不等关系。知识点三:函数型实际应用问题他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A. 20分钟B. 22分钟C. 24分钟D. 26分钟思路分析:1)题意分析:从图中可以看出,图象分两部分,是由两个一次函数图象组合在一起的分段函数。2)解题思路:先求出该考生一直步行所用时间和先步行后改乘出租车
10、所用时间,再求差。所以,先步行后乘出租车赶往考场共用时间为10616(分钟),他到达考场所花的时间比一直步行提前了401624(分钟),故选C。解题后的思考:在这里未知数的系数的意义是表示不同的行使速度。例6:甲车在弯路进行刹车试验,收集到的数据如下表所示:(1)请用上表中的各对数据(x,y)作为点的坐标,在如图所示的坐标系中画出甲车刹车距离y(米)与速度x(千米/时)的函数图象,并求函数的解析式。(2)在一限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了。事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车思路分析:1)题意分析:解答本题的关键是确定甲车刹车距
11、离y(米)与速度x(千米/时)的函数关系式。2)解题思路:利用收集的数据,通过描点可以看出y与x的关系图象近似于二次函数图象,因此取三点求出二次函数的解析式,再利用解析式解决实际问题。解答过程:(1)函数图象如图所示。设函数的解析式为yax2bxc。图象经过点(0,0)、(10,2)、(20,6),因为乙车速度为42千米/时,大于40千米/时,而甲车速度为30千米/时,小于40千米/时。所以,就速度因素而言,由于乙车超速,导致两车相撞。解题后的思考:(1)本题利用实际生活背景考查了利用待定系数法求过三点的二次函数解析式及利用函数值求自变量取值的应用问题。(2)对于这类开放性综合问题,要求学生能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 实际 应用 问题
限制150内