人教版高中数学选修1-1全套教案(54页).doc
《人教版高中数学选修1-1全套教案(54页).doc》由会员分享,可在线阅读,更多相关《人教版高中数学选修1-1全套教案(54页).doc(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人教版高中数学选修1-1全套教案-第 53 页第一课时 1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.
2、 上述6个语句中,(1)(2)(4)(5)(6)是命题.真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若,则”的形式:例1中的(2)就
3、是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.试将例1中的命题(6)改写成“若,则”的形式.例2:将下列命题改写成“若,则”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.三、巩固练习:1. 练习:教材 P41、2、32. 作业:教材P9第1题第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系. 教学重点:四种命题的概念及相互关系.
4、 教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数有两个零点.来源:Zxxk.Com二、讲授新课:1. 教学四种命题的概念:原命题逆命题否命题逆否命题若,则若,则若,则若,则来源:Zxxk.Com写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.(师生共析学生说出答案教师点评)来源:Z。xx。k.Com例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(
5、学生自练个别回答教师点评)2. 教学四种命题的相互关系:讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.四种命题的相互关系图:来源:学*科*网Z*X*X*K来源:学,科,网Z,X,X,K讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.例2 若,则.(利用结论一来证明)(教师引导学生板书教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数有两个零点;(2)若,则;(3)若,则
6、全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 作业:教材P9页第2(2)题P10页第3(1)题1.2 充分条件和必要条件(1)【教学目标】1从不同角度帮助学生理解充分条件、必要条件与充要条件的意义;2结合具体命题,初步认识命题条件的充分性、必要性的判断方法;3培养学生的抽象概括和逻辑推理的意识【教学重点】构建充分条件、必要条件的数学意义;【教学难点】命题条件的充分性、必要性的判断【教学过程】一、复习回顾1命题:可以判断真假的语句,可写成:若p则q2四种命题及相互关系:3请判断下列命题的真假:(1)若,则; (2)若,则;(3)若,则; (4)若,则来源:学.科
7、.网二、讲授新课1.推断符号“”的含义:一般地,如果“若,则”为真, 即如果成立,那么一定成立,记作:“”;如果“若,则”为假, 即如果成立,那么不一定成立,记作:“”.用推断符号“和”写出下列命题:若,则;若,则;2充分条件与必要条件一般地,如果,那么称p是q的充分条件;同时称q是p的必要条件如何理解充分条件与必要条件中的“充分”和“必要”呢?由上述定义知“”表示有必有,所以p是q的充分条件,这点容易理解但同时说q是p的必要条件是为什么呢?q是p的必要条件说明没有就没有,是成立的必不可少的条件,但有未必一定有. 充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的它符
8、合上述的“若p则q”为真(即)的形式“有之必成立,无之未必不成立”必要性:必要就是必须,必不可少它满足上述的“若非q则非p”为真(即)的形式“有之未必成立,无之必不成立”命题按条件和结论的充分性、必要性可分为四类:(1)充分必要条件(充要条件),即 且;(2)充分不必要条件,即且;(3)必要不充分条件,即且;(4)既不充分又不必要条件,即且3从不同角度理解充分条件、必要条件的意义(1)借助“子集概念”理解充分条件与必要条件。设为两个集合,集合是指。这就是说,“”是“”的充分条件,“”是“ ”的必要条件。对于真命题“若p则q”,即,若把p看做集合,把q看做集合,“”相当于“”。(2)借助“电路图
9、”理解充分条件与必要条件。设“开关闭合”为条件,“灯泡亮”为结论,可用图1、图2来表示是的充分条件,是的必要条件。B3AC图2CAB图4CAB图1图3B3A(3)回答下列问题中的条件与结论之间的关系:若,则;若,则;若两三角形全等,则两三角形的面积相等三、例题例1:指出下列命题中,p是q的什么条件p:,q:;p:两直线平行,q:内错角相等;p:,q:;p:四边形的四条边相等,q:四边形是正方形四、课堂练习课本P8 练习1、2、3五、课堂小结1充分条件的意义;2必要条件的意义六、课后作业:1.2 充分条件和必要条件(2)教学目标:1进一步理解并掌握充分条件、必要条件、充要条件的概念;2掌握判断命
10、题的条件的充要性的方法;教学重点、难点:理解充要条件的意义,掌握命题条件的充要性判断来源:学科网ZXXK教学过程:来源:学。科。网一、复习回顾一般地,如果已知,那么我们就说p是q成立的充分条件,q是p的必要条件“”是“”的 充分不必要 条件若a、b都是实数,从;中选出使a、b都不为0的充分条件是 二、例题分析条件充要性的判定结果有四种,判定的方法很多,但针对各种具体情况,应采取不同的策略,灵活判断下面我们来看几个充要性的判断及其证明的例题1要注意转换命题判定,培养思维的灵活性例1:已知p:;q:x、y不都是,p是q的什么条件?分析:要考虑p是q的什么条件,就是判断“若p则q”及“若q则p”的真
11、假性从正面很难判断是,我们从它们的逆否命题来判断其真假性“若p则q”的逆否命题是“若x、y都是,则”真的“若q则p”的逆否命题是“若,则x、y都是”假的故p是q的充分不必要条件注:当一个命题很难判断其真假性时,我们可以从其逆否命题来着手练习:已知p:或;q:或,则是的什么条件?方法一: 来源:Zxxk.Com显然是的的充分不必要条件方法二:要考虑是的什么条件,就是判断“若则”及“若则”的真假性“若则”等价于“若q则p”真的“若则”等价于“若p则q”假的故是的的充分不必要条件2要注意充要条件的传递性,培养思维的敏捷性例2:若M是N的充分不必要条件,N是P的充要条件,Q是P的必要不充分条件,则M是
12、Q的什么条件?分析:命题的充分必要性具有传递性 显然M是Q的充分不必要条件3充要性的求解是一种等价的转化例3:求关于x的一元二次不等式于一切实数x都成立的充要条件分析:求一个问题的充要条件,就是把这个问题进行等价转化由题可知等价于4充要性的证明,关键是理清题意,特别要认清条件与结论分别是什么例4:证明:对于x、yR,是的必要不充分条件分析:要证明必要不充分条件,就是要证明两个,一个是必要条件,另一个是不充分条件必要性:对于x、yR,如果则, 即故是的必要条件不充分性:对于x、yR,如果,如,此时故是的不充分条件综上所述:对于x、yR,是的必要不充分条件来源:Zxxk.Com例5:p:;q:若是
13、的必要不充分条件,求实数m的取值范围解:由于是的必要不充分条件,则p是q的充分不必要条件于是有三、练习:1若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,那么:命题丁是命题甲的什么条件(必要不充分的条件)2对于实数x、y,判断“x+y8”是“x2或y6”的什么条件(充分不必要条件)3已知,求证:的充要条件是:.简单的逻辑联结词(二)复合命题教学目标:加深对“或”“且”“非”的含义的理解,能利用真值表判断含有复合命题的真假;教学重点:判断复合命题真假的方法;教学难点:对“p或q”复合命题真假判断的方法课 型:新授课教学手段:多媒体一、创设情境1什么叫做
14、命题?(可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题)2逻辑联结词是什么?(“或”的符号是“”、“且”的符号是“”、“非”的符号是“”,这些词叫做逻辑联结词)3什么叫做简单命题和复合命题?(不含有逻辑联结词的命题是简单命题由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题)4复合命题的构成形式是什么?p或q(记作“pq” ); p且q(记作“pq” );非p(记作“q” ) 二、活动尝试问题1: 判断下列复合命题的真假(1)87(2)2是偶数且2是质数;(3)不是整数;解:(1)真;(2)真;(3)真;命题的真假结果与命题的结构中的p和q的真假有什么联系吗?这中间是否存
15、在规律?三、师生探究1“非p”形式的复合命题真假:例1:写出下列命题的非,并判断真假:(1)p:方程x2+1=0有实数根(2)p:存在一个实数x,使得x29=0(3)p:对任意实数x,均有x22x+10;(4)p:等腰三角形两底角相等显然,当p为真时,非p为假; 当p为假时,非p为真2“p且q”形式的复合命题真假:例2:判断下列命题的真假:(1)正方形ABCD是矩形,且是菱形;(2)5是10的约数且是15的约数(3)5是10的约数且是8的约数(4)x2-5x=0的根是自然数所以得:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。3“p或q”形式的复合命题真假:例3:判断下列
16、命题的真假:(1)5是10的约数或是15的约数;(2)5是12的约数或是8的约数;(3)5是12的约数或是15的约数;(4)方程x23x-4=0的判别式大于或等于零当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。四、数学理论来源:Zxxk.Com1“非p”形式的复合命题真假:当p为真时,非p为假; 当p为假时,非p为真p非p真假假真(真假相反)2“p且q”形式的复合命题真假:当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。pqp且q真真真真假假假真假假假假(一假必假)3“p或q”形式的复合命题真假:当p、q中至少有一个为真时,p或q为真;当p、q都为
17、假时,p或q为假。pqP或q来源:Zxxk.Com真真真真假真假真真假假假(一真必真) 注:1像上面表示命题真假的表叫真值表;2由真值表得:“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;3真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容。如:p表示“圆周率是无理数”,q表示“ABC是直角三角形”,尽管p与q的内容毫无关系,但并不妨碍我们利用真值表判断其命题p或q 的真假。4介绍“或门电路”“与门电路”。或门电路(或) 与门电路(且)五、巩
18、固运用例4:判断下列命题的真假:(1)43 (2)44 (3)45(4)对一切实数分析:(4)为例:第一步:把命题写成“对一切实数或”是p或q形式第二步:其中p是“对一切实数”为真命题;q是“对一切实数”是假命题。第三步:因为p真q假,由真值表得:“对一切实数”是真命题。例5:分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假:(1)p:2+2=5;q:32来源:学_科_网Z_X_X_K(2)p:9是质数;q:8是12的约数;来源:Z。xx。k.Com(3)p:11,2;q:11,2(4)p:0;q:0解:p或q:2+2=5或32 ;p且q:2+2=5且32 ;非p:2+25
19、.p假q真,“p或q”为真,“p且q”为假,“非p”为真.p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.p假q假,“p或q”为假,“p且q”为假,“非p”为真.p或q:11,2或11,2;p且q:11,2且11,2;非p:11,2.p真q真,“p或q”为真,“p且q”为真,“非p”为假.p或q:0或=0;p且q:0且=0 ;非p:0.p真q假,“p或q”为真,“p且q”为假,“非p”为假.七、课后练习1命题“正方形的两条对角线互相垂直平分”是( )A简单命题 B非p形式的命题 Cp或q形式的命题 Dp且q的命题2如果命题p是假命题,命题q是真命题,则下列
20、错误的是( )A“p且q”是假命题 B“p或q”是真命题C“非p”是真命题 D“非q”是真命题3(1)如果命题“p或q”和“非p”都是真命题,则命题q的真假是_。 (2)如果命题“p且q”和“非p”都是假命题,则命题q的真假是_。4分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假.(1)5和7是30的约数.(2)菱形的对角线互相垂直平分.(3)8x52无自然数解.5判断下列命题真假:(1)108; (2)为无理数且为实数;来源:学科网ZXXK(3)2+2=5或32 (4)若AB=,则A=或B=6已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 选修 全套 教案 54
限制150内