新课程人教版高中数学选修2-2课后习题解答(全)(17页).doc
《新课程人教版高中数学选修2-2课后习题解答(全)(17页).doc》由会员分享,可在线阅读,更多相关《新课程人教版高中数学选修2-2课后习题解答(全)(17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-新课程人教版高中数学选修2-2课后习题解答(全)-第 17 页第一章 导数及其应用31变化率与导数练习(P6)在第3 h和5 h时,原油温度的瞬时变化率分别为和3. 它说明在第3 h附近,原油温度大约以1 h的速度下降;在第5 h时,原油温度大约以3 h的速率上升.练习(P8)函数在附近单调递增,在附近单调递增. 并且,函数在附近比在附近增加得慢. 说明:体会“以直代曲”的思想.练习(P9)函数的图象为根据图象,估算出,.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数.习题1.1 A组(P10)1、在处,虽然,然而. 所以,企业甲比企业乙治
2、理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、,所以,. 这说明运动员在s附近以3.3 ms的速度下降.3、物体在第5 s的瞬时速度就是函数在时的导数. ,所以,. 因此,物体在第5 s时的瞬时速度为10 ms,它在第5 s的动能 J.4、设车轮转动的角度为,时间为,则. 由题意可知,当时,. 所以,于是. 车轮转动开始后第3.2 s时的瞬时角速度就是函数在时的导数. ,所以. 因此,车轮在开始转动后第3.2 s时的瞬时角速度为.说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数在处切线的斜率大于零,所以函数在附近单调递增. 同理可得,函数在,0,2
3、附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数的图象如图(1)所示;第二个函数的导数恒大于零,并且随着的增加,的值也在增加;对于第三个函数,当小于零时,小于零,当大于零时,大于零,并且随着的增加,的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系.习题3.1 B组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的的信息获得的相
4、关信息,并据此画出的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数的图象在点处的切线斜率为,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一.12导数的计算练习(P18)1、,所以,.2、(1); (2); (3); (4); (5); (6).习题1.2 A组(P18)1、,所以,.2、. 3、.4、(1); (2); (3);
5、(4);(5); (6).5、. 由有 ,解得.6、(1); (2). 7、.8、(1)氨气的散发速度. (2),它表示氨气在第7天左右时,以25.5克天的速率减少.习题1.2 B组(P19)1、(1)(2)当越来越小时,就越来越逼近函数.(3)的导数为.2、当时,. 所以函数图象与轴交于点. ,所以. 所以,曲线在点处的切线的方程为.2、. 所以,上午6:00时潮水的速度为mh;上午9:00时潮水的速度为mh;中午12:00时潮水的速度为mh;下午6:00时潮水的速度为mh.13导数在研究函数中的应用练习(P26)1、(1)因为,所以. 当,即时,函数单调递增; 当,即时,函数单调递减. (
6、2)因为,所以. 当,即时,函数单调递增; 当,即时,函数单调递减. (3)因为,所以. 当,即时,函数单调递增; 当,即或时,函数单调递减. (4)因为,所以. 当,即或时,函数单调递增; 当,即时,函数单调递减.注:图象形状不唯一.2、3、因为,所以. (1)当时,即时,函数单调递增;,即时,函数单调递减.(2)当时,即时,函数单调递增;,即时,函数单调递减.4、证明:因为,所以. 当时, 因此函数在内是减函数.练习(P29)1、是函数的极值点,其中是函数的极大值点,是函数的极小值点.2、(1)因为,所以. 令,得. 当时,单调递增;当时,单调递减. 所以,当时,有极小值,并且极小值为.
7、(2)因为,所以. 令,得. 下面分两种情况讨论:当,即或时;当,即时. 当变化时,变化情况如下表:300单调递增54单调递减单调递增因此,当时,有极大值,并且极大值为54;当时,有极小值,并且极小值为. (3)因为,所以. 令,得. 下面分两种情况讨论:当,即时;当,即或时. 当变化时,变化情况如下表:200单调递减单调递增22单调递减因此,当时,有极小值,并且极小值为;当时,有极大值,并且极大值为22 (4)因为,所以. 令,得. 下面分两种情况讨论:当,即时;当,即或时. 当变化时,变化情况如下表:100单调递减单调递增2单调递减因此,当时,有极小值,并且极小值为;当时,有极大值,并且极
8、大值为2练习(P31)(1)在上,当时,有极小值,并且极小值为. 又由于,. 因此,函数在上的最大值是20、最小值是.(2)在上,当时,有极大值,并且极大值为;当时,有极小值,并且极小值为; 又由于,. 因此,函数在上的最大值是54、最小值是.(3)在上,当时,有极大值,并且极大值为. 又由于,. 因此,函数在上的最大值是22、最小值是.(4)在上,函数无极值. 因为,. 因此,函数在上的最大值是、最小值是.习题1.3 A组(P31)1、(1)因为,所以. 因此,函数是单调递减函数. (2)因为,所以,. 因此,函数在上是单调递增函数. (3)因为,所以. 因此,函数是单调递减函数. (4)因
9、为,所以. 因此,函数是单调递增函数.2、(1)因为,所以. 当,即时,函数单调递增. 当,即时,函数单调递减.(2)因为,所以. 当,即时,函数单调递增. 当,即时,函数单调递减.(3)因为,所以. 因此,函数是单调递增函数.(4)因为,所以. 当,即或时,函数单调递增. 当,即时,函数单调递减.3、(1)图略. (2)加速度等于0.4、(1)在处,导函数有极大值; (2)在和处,导函数有极小值; (3)在处,函数有极大值; (4)在处,函数有极小值.5、(1)因为,所以. 令,得. 当时,单调递增; 当时,单调递减. 所以,时,有极小值,并且极小值为. (2)因为,所以. 令,得. 下面分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课程 人教版 高中数学 选修 课后 习题 解答 17
限制150内