spss卡方检验与有关分析.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《spss卡方检验与有关分析.ppt》由会员分享,可在线阅读,更多相关《spss卡方检验与有关分析.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五章 相关分析与检验,相关分析之一有关与无关,寻找变量间的关系是科学研究的首要目的。变量间的关系最简单的划分即:有关与无关。 在统计学上,我们通常这样判断变量之间是否有关:如果一个变量的取值发生变化,另外一个变量的取值也相应发生变化,则这两个变量有关。如果一个变量的变化不引起另一个变量的变化则二者无关。,性别与四级英语考试通过率的相关统计,表述:统计结果显示,当性别取值不同时,通过率变量的取值并未发生变化,因此性别与考试通过率无关。 自变量的不同取值在因变量上无差异,两变量无关。 自变量的不同取值在因变量上有差异,两变量有关。,统计结果显示,当性别取值不同时,收入变量的取值发生了变化,因此性
2、别与月收入有关。,变量关系的统计类型,相关分析之二关系强度,变量关系强度的含义:指两个变量相关程度的高低。统计学中是以准实验的思想来分析变量相关的。通常从以下的角度分析: A)两变量是否相互独立。 B)两变量是否有共变趋势。 C)一变量的变化多大程度上能由另一变量的变化来解释。,变量关系强度测量的主要指标,相关分析之三关系性质,直线相关与曲线相关 正相关与负相关 完全相关与完全不相关,一、列联相关(第四章已讲),(一)列联分析的基本原理 自变量发生变化,因变量取值是否也发生变化。 比较边缘百分比和条件百分比的差别。,卡方测量用来考察两变量是否独立(无关)。,二、相关分析(Correlate),
3、(一)简介,相关分析用于描述两个变量间联系的密切程度,其特点是变量不分主次,被置于同等的地位。检验的原假设为相关系数为0。可选择是单尾检验还是双尾检验。 在Analyze的下拉菜单Correlate命令项中有三个相关分析功能子命令Bivariate过程(二变量相关分析)、Partial过程(偏相关分析)、 Distances过程(距离分析)。,(二)相关分析类型,Bivariate过程用于进行两个或多个变量间的相关分析,如为多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他变量的影响时,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后
4、的相关系数。 Distances过程用于对同一变量各观察单位间的数值或各个不同变量间进行相似性或不相似性分析,一般不单独使用,而作为因子分析等的预分析。,(三)Bivariate相关分析,在进行相关分析时,散点图是重要的工具,分析前应先做散点图,以初步确定两个变量间是否存在相关趋势,该趋势是否为直线趋势,以及数据中是否存在异常点。否则可能得出错误结论。 Bivariate相关分析的步骤:输入数据后,依次单击AnalyzeCorrelateBivariate,打开Bivariate Correlations对话框,Bivariate Correlations 对话框,Pearson复选框 选择进
5、行积差相关分析,即最常用的相关分析,其计算连续变量或等间隔测度变量间的相关系数。计算该相关系数时,不仅要求两相关变量均为正态变量,而且样本数(N)一般不应少于30。,Kendalls tau-b复选框 计算Kendalls等级相关系数,其计算定序变量间的线性相关关系。(有打结现象时) Spearman复选框 计算Spearman相关系数。也是计算等级相关系数(定序与定序)。最常用的非参数相关分析(秩相关),适用于连续等级资料。 (无打结现象) 以上三种相关分析可以选择其中之一,也可以同时多选。如果参与分析的变量是连续变量,选择Kendalls tau-b或Spearman相关,则系统自动对连续
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- spss 检验 检修 有关 分析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内