构造法求数列通项公式(5页).doc
《构造法求数列通项公式(5页).doc》由会员分享,可在线阅读,更多相关《构造法求数列通项公式(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-构造法求数列通项公式-第 5 页构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为=A(其中A为常数)形式,根据等差数列的定义知是等差数列,根据等差数列的通项公式,先求出的通项公式,再根据与,从而求出的通项公式。例1 在数列中,=,=(),求数列通项公式.解析:由an+1=得,an+1 an=3 an+1-3 an=0,两边同除以an+1 an得,设bn=,则bn+1- bn=,根据等差数列的定义知,数
2、列bn是首相b1=2,公差d=的等差数列,根据等差数列的通项公式得bn=2(n-1)=n数列通项公式为an=评析:本例通过变形,将递推公式变形成为形式,应用等差数列的通项公式,先求出的通项公式,从而求出的通项公式。例2 在数列an中,Sn是其前n项和,且Sn0,a1=1,an=(n2),求Sn与an。解析:当n2时,an=Sn-Sn-1 代入an=得,Sn-Sn-1=,变形整理得Sn-Sn-1= SnSn-1两边除以SnSn-1得,-=2,是首相为1,公差为2的等差数列=1+2(n-1)=2n-1, Sn=(n2),n=1也适合,Sn=(n1)当n2时,an=Sn-Sn-1=-=-,n=1不满
3、足此式,an=评析:本例将所给条件变形成,先求出的通项公式,再求出原数列的通项公式,条件变形是难点。二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f(n+1)=Af(n)(其中A为非零常数)形式,根据等比数列的定义知是等比数列,根据等比数列的通项公式,先求出的通项公式,再根据与,从而求出的通项公式。例3在数列an中,a1=2,an=an-12(n2),求数列an通项公式。解析: a1=2,an=an-12(n2)0,两边同时取对数得,lg an=2lg an-1=2, 根据等比数列的定义知,数列lg an是首相为lg2,公比为2的等比数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 构造 数列 公式
限制150内