椭圆知识点总结及经典习题(8页).doc
《椭圆知识点总结及经典习题(8页).doc》由会员分享,可在线阅读,更多相关《椭圆知识点总结及经典习题(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-椭圆知识点总结及经典习题-第 8 页圆锥曲线与方程-椭圆 知识点一椭圆及其标准方程1椭圆的定义:平面内与两定点F1,F2距离的和等于常数的点的轨迹叫做椭圆,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|=2c;这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。(时为线段,无轨迹)。2标准方程: 焦点在x轴上:(ab0); 焦点F(c,0)焦点在y轴上:(ab0); 焦点F(0, c) 注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示: 或者 mx2+ny2=1 二椭圆的简单几何性质: (1)椭圆(ab0) 横坐标-a
2、xa ,纵坐标-bxb (2)椭圆(ab0) 横坐标-bxb,纵坐标-axa 椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 (1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) (2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。 4离心率 (1)我们把椭圆的焦距与长轴长的比,即称为椭圆的离心率,记作e(), 是圆; e越接近于0 (e越小),椭圆就越接近于圆;e越接近于1 (e越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关
3、,与其所处的位置无关。小结一:基本元素(1)基本量:a、b、c、e、(共四个量), 特征三角形(2)基本点:顶点、焦点、中心(共七个点)(3)基本线:对称轴(共两条线)5椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6.几何性质 (1)点P在椭圆上, 最大角 (2)最大距离,最小距离7. 直线与椭圆的位置关系(1) 位置关系的判定:联立方程组求根的判别式;(2) 弦长公式: (3) 中点弦问题:韦达定理法、点差法例题讲解:一.椭圆定义:方程化简的结果是 2若的两个顶点,的周长为,则顶点的轨迹方程是 =1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 二利用标准方程确定参数
4、+=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x轴上的椭圆,则实数k的取值范围是 .(3)表示焦点在y型上的椭圆,则实数k的取值范围是 .(4)表示椭圆,则实数k的取值范围是 .的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3椭圆的焦距为,则= 。4椭圆的一个焦点是,那么 。三待定系数法求椭圆标准方程1若椭圆经过点,则该椭圆的标准方程为 。2焦点在坐标轴上,且,的椭圆的标准方程为 3焦点在轴上,椭圆的标准方程为4. 已知三点P(5,2)、(6,0)、(6,0),求以、为焦点且过点P的椭圆的标准方程;变式:求与椭圆共焦点,且过点的椭圆方程。四焦点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 知识点 总结 经典 习题
限制150内