概率统计习题(19页).doc
《概率统计习题(19页).doc》由会员分享,可在线阅读,更多相关《概率统计习题(19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-概率统计习题-第 19 页习题一1设、是某一随机试验的3个事件,用、的运算关系表示下列事件:(1)、都发生;(2)、都不发生;(3)与发生,而不发生;(4)发生,而与不发生;(5)、中至少有一个发生;(6)、中不多于一个发生;(7)与都不发生;(8)与中至少有一个发生;(9) 、中恰有两个发生.2将一颗骰子连掷两次,观察其掷出的点数令 =“两次掷出的点数相同” , =“点数之和为10” ,=“最小点数为4” 试分别指出事件 、 、以及 、 、 、 、 各自含有的样本点3在一段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次, 记事件(k = 1 ,2 ,)表示“接到的呼唤次数小于k”
2、 ,试用间的运算表示下列事件:(1) 呼唤次数大于2 ;(2) 呼唤次数在5到10次范围内;(3) 呼唤次数与8的偏差大于24下列命题是否成立,并说明理由:(1) (2) (3) (4) (5) 若,则 (6)若则5事件、两两互不相容与是否为一回事?为什么? 6.设、是3个事件,求、中至少有一个发生的概率. 7. ,求,.8设 、 、是三个随机事件,且有 , , = 0.8 ,求9将10本书任意放到书架上,求其中仅有的3本外文书恰排在一起的概率个号码:1号,2号,10号,装于一袋中,从中任取3个,按从小到大的顺序排列,求中间的号码恰好我5号的概率.35件正品,5件次品组成的产品中任取3件,求其
3、中恰有一件次品的概率.12. 一批产品共N件,其中Mn件(nN).试求其中恰有m件(mM)正品(记为A)的概率.如果:(1) n件是同时取出的;(2) n件是无放回逐件取出的;(3) n件是有放回逐件取出的.13两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率14.同时抛枚硬币,求至少有一枚出现正面的概率.15. 一个袋内装有大小相同的10个球,其中4个是白球,6个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.16某货运码头仅能容一船卸货,而甲已两船在码头卸货时间分别为1小时和2小时设甲、乙两船在24小时内随时可能到达,求它们中任何一船都不需等待码头空出的概率个零件,其中48个精度
4、合格,45个表面粗糙度合格,44个精度和表面粗糙度都合格.现从中任取一个,已验得其表面粗糙度合格,问其精度合格的可能性多大?18.已知,求.19设,问 (1) 什么条件下可以取最大值,其值是多少?(2) 什么条件下可以取最小值,其值是多少?20由长期统计资料得知,某一地区在4月份下雨(记为事件)的概率为 ,刮风(记为事件)的概率为,既刮风又下雨的概率为求21.某人有5把钥匙,其中两把可以打开门,从中随机取一把试开房门,求第三次才打开门的概率.22. 一猎人用猎枪向一野兔射击,第一枪距离野兔200m远,如果未击中,他追到离野兔150m处第二次射击,如果仍未击中,他追到距离野兔100m处进行第三次
5、射击,此时击中的概率为.如果这个猎人射击的命中率与他到野兔的距离的平方成反比,求猎人击中野兔的概率.23.已知某种疾病的发病率为0.1%, 该种疾病患者一个月以内的死亡率为90%;且知未患该种疾病的人一个月以内的死亡率为0.1%;现从人群中任意抽取一人,问此人在一个月内死亡的概率是多少?若已知此人在一个月内死亡,则此人是因该种疾病致死的概率为多少?24. 将两信息分别编码为A和B传递出来,接收站收到时,A被误收作B的概率为,而B被误收作A的概率为0.01.信息A与B传递的频繁程度为21.若接收站收到的信息是A,试问原发信息是A的概率是多少?25. 商店论箱出售玻璃杯,每箱20只,其中每箱含0,
6、1,2只次品的概率分别为,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?26设一箱产品共100件,其中次品个数从0到2是等可能的开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收(1)求该箱产品通过验收的概率;(2)若已知该箱产品已通过验收,求其中确实没有次品的概率27某保险公司把被保险人分为3类:“谨慎的”、“一般的”、“冒失的”。统计资料表明,上述3种人在一年内发生事故的概率依次为、和;如果“谨慎的”被保的人占20%,“一般的”占50%,“冒失的”占30%.(1 ) 求被保险的人一年内出事故的概率。(1) 现知某
7、被保险的人在一年内出了事故,则他是“谨慎的”的概率是多少?28. 甲、乙、丙3人独立地向同一飞机射击,设击中的概率分别是,若只有一人击中,则飞机被击落的概率为;若有两人击中,则飞机被击落的概率为;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.29.电路由电池与两个并联的电池、串联而成,设电池、损坏的概率分别是、,求电路发生断电的概率.30.三人独立地破译一份密码,已知每人能破译的概率分别是,求密码能被破译的概率.31.某类灯泡试用时间在1000小时以上的概率为0.2,求3个灯泡在使用1000小时以后:(1)都没有坏的概率.(2)坏了一个的概率.(3)最多只有一个坏了得概率.32. 某工
8、厂生产的仪器中一次检验合格的占60 ,其余的需重新调试 经重新调试的产品中有80 经检验合格,而20 会被判定为不合格产品而不能出厂现该厂生产了200台仪器,求下列事件的概率:(1) 全部仪器都能出厂;(2) 恰有10台不合格.33.甲乙两人投篮命中率分别为和0.8,每人投篮3次,求(1)两人进球数相等的概率.(2)甲比乙进球数多的概率.34.假设每个人的生日在任何月份都是等可能的,已知某单位中至少有一人的生日在一月份的概率不小于0.96,问这个单位有多少人?35某自动化机器发生故障的概率为,如果一台机器发生故障只需要一个维修工人去处理,因此,每8台机器配备一个维修工人,试求: (1) 维修工
9、人无故障可修的概率; (2)工人正在维修一台出故障的机器时,另外又有机器出故障则待维修. 如果认为每四台机器配备一个维修工人,还经常出故障得不到及时维修。那么,四台机器至少应配备多少个维修工人才能保证机器发生了故障待维修的概率小于3%36*.巴拿赫火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根试求他首次发现一盒空时另一盒恰有r根的概率是多少(r=1,2,3,N)?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又是多少?习题二1. 设随机变量的分布律为.(1) 求常数; (2)求概率;(3)求概率.2. 设随机变量的分布律为,求c的值
10、.3. 盒中有5只球,分别编号为1、2、3、4、5号.在从盒中同时取出3只球,用表示取出的3只球中最大的编号,写出的分布律.4. 抛一枚硬币,直到出现正面为止,求抛的次数的分布律. 5 .一批零件中有9个正品和3个次品,现从中任取一个,.如果每次取出的是次品,则不再放回,再取下一个,直到取到正品为止,求在取到正品以前已取得出的次品数的分布律.6. 10门炮同时向敌舰各射击一发炮弹,当有不少于两发炮弹击中时,敌舰将被击沉,设每门炮射击一发炮弹的命中率为0.6,求敌舰被击沉的概率.7.某街道有10部公用电话,调查表明在任一时刻每部电话被使用的概率为0.85,求在同一时刻(1)被使用的电话部数的分布
11、律;(2)至少有8部电话被使用的概率;(3)至少有一部电话未被使用的概率;(4)为保证至少有一部电话不被使用的概率不小于90%,应再安装多少部公用电话?8.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率.9.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求(1)每分钟恰有3次呼唤的概率;(2)每分钟呼唤次数大雨 的概率.10. 某教科书出版了2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有5册错误的概率.11. 有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个
12、人死亡的概率为,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1) 保险公司亏本的概率;(2) 保险公司获利不少于10000元的概率. 13.某射手射击一个固定目标,每次命中率为0.3,每命中一次记2分,否则扣1分,求两次射击后该射手得分总数的分布函数.14.已知随机变量的分布函数为求的分布律.15. 已知随机变量X的密度函数为f(x)=Ae-|x|, -x+,求:(1)A值;(2)P0X1; (3) F(x).16.已知随机变量X的密度函数为,求(1) ,(2) ,分布函数.17. 连续型随机变量的分布函数为(1)试确定常数a,b,c,d的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 统计 习题 19
限制150内