概率论知识点总结(6页).doc
《概率论知识点总结(6页).doc》由会员分享,可在线阅读,更多相关《概率论知识点总结(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-概率论知识点总结-第 6 页概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为。 必然事件:在试验中必然出现的事情,记为。 样本点:随机试验的每个基本结果称为样本点,记作. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用表示. 一个随机事件就是样本空间的一个子集。基本事件单点集,复合事件多点集一个随机事件发生,当且仅当该事件
2、所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为AB。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为 AB。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A与事件B的差事件,记为 AB。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为AB。对立事件:称事件“A不发生”为
3、事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:AB=BA,AB=BA(2)结合律:A(BC)=(AB)C=ABC A(BC)=(AB)C=ABC(3)分配律:A(BC)(AB)(AC) A(BC)(AB)(AC)= ABAC(4)对偶律(摩根律): 第二节 事件的概率概率的公理化体系:(1)非负性:P(A)0;(2)规范性:P()1(3)可数可加性:两两不相容时概率的性质:(1)P()0(2)有限可加性:两两不相容时当AB=时P(AB)P(A)P(B)(3)(4)P(AB)P(A)P(AB)(5)P(AB)P(A)P(B)P(AB)第三节
4、 古典概率模型1、设试验E是古典概型, 其样本空间2、几何概率:设事件A是的某个区域,它的面积为 (A),则向区域上随机投掷一点,该点落在区域 A 的概率为假如样本空间可用一线段,或空间中某个区域表示,则事件A的概率仍可用上式确定,只不过把理解为长度或体积即可. 第四节 条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B).乘法公式:P(AB)=P(B)P(A|B)P(A)P(B|A)全概率公式:设是一个完备事件组,则P(B)=P()P(B|)贝叶斯公式:设是一个完备事件组,则第五节 事件的独立性两个事件的相互独立:若两事件A、B满足P(AB)= P(A)
5、P(B),则称A、B独立,或称A、B相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A、B、C相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A、B、C两两独立独立的性质:若A与B相互独立,则与B,A与,与均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。2.乘法公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 知识点 总结
限制150内