《八下数学《平行四边形》竞赛试卷-(8K含答案)(20页).doc》由会员分享,可在线阅读,更多相关《八下数学《平行四边形》竞赛试卷-(8K含答案)(20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-八下数学平行四边形竞赛试卷-(8K含答案)-第 20 页学校八年级数学平行四边形竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题4分,满分36分)1在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PEBD,PFAC,E、F分别是垂足,那么PE+PF=_2(2003宁波)如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_(填一个即可)3如图,已知矩形ABCD,对角线AC、BD相交于O,AEBD于E,若AB=6,AD=8,则AE=_4如图,以ABC的三边为边在BC的同一侧分别作三
2、个等边三角形,即ABD、BCE、ACF(1)四边形ADEF是_;(2)当ABC满足条件_时,四边形ADEF为菱形;(3)当ABC满足条件_时,四边形ADEF不存在1题 2题 3题 4题5已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为_6如图所示,在平行四边形ABCD中,EFBC,GHAB,EF、GH的交点P在BD上,图中有_对四边形面积相等;它们是_7如图,菱形ABCD的对角线AC、BD相交于O,AOB的周长为3+,ABC=60,则菱形ABCD的面积为_8如图,矩形ABCD中,AC、BD相交于点O,AE平分BAD,交BC于E,若EAO=15,则BOE的度数为_度
3、9如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D处,则重叠部分AFC的面积为_ 6题 7题 8题 9题二、选择题(共9小题,每小题5分,满分45分)10如图,ABCD中,ABC=75,AFBC于F,AF交BD于E,若DE=2AB,则AED的大小是()A60B65C70D7510题 11题 12题 13题11如图,正AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则B的度数是()A70B75C80D9512如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A2BC3D13如图,平行四边形ABC
4、D中,BC=2AB,CEAB于E,F为AD的中点,若AEF=54,则B=()A54B60C66D7214四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A两组角分别相等的四边形B平行四边形C对角线互相垂直的四边形D对角线相等的四边形15周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A98B196C280D284 15题 16题16(2003吉林)如图,菱形花坛ABCD的边长为6m,A=120,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A12mB20mC
5、22mD24m17在凸四边形ABCD中,ABCD,且AB+BC=CD+DA,则()AADBCBADBCCAD=BCDAD与BC的大小关系不能确定18已知四边形ABCD,从下列条件中:(1)ABCD;(2)BCAD;(3)AB=CD;(4)BC=AD;(5)A=C;(6)B=D任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A4种B9种C13种D15种三、解答题(共11小题,满分0分)19如图,在ADC中,BAC=90,ADBC,BE、AF分别是ABC、DAC的平分线,BE和AD交于G,求证:GFAC20设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,P
6、F垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BCBD,且BC=BD21如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE如果AD=BC=CE=DE,求BAC的度数22如图,ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边ADE(1)求证:ACDCBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且DEF=3023(2002河南)如图所示,在RtABC中,AB=AC,A=90,点D为BC上任一点,DFAB于F,DEAC于E,M为BC的中点,试判断MEF是什么形状的三角形,并
7、证明你的结论24(2008咸宁)如图,在ABC中,点O是AC边上的一个动点,过点O作直线MNBC,设MN交BCA的角平分线于点E,交BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论25如图,在RtABC中,ABC=90,C=60,BC=2,D是AC的中点,以D作DEAC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长26(2002陕西)阅读下面短文:如图,ABC是直角三角形,C=90,现将ABC补成矩形,使ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出
8、两个矩形ACBD和矩形AEFB(如图)解答问题:(1)设图中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_S2(填“”“=”或“”)(2)如图,ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_个,利用图把它画出来(3)如图,ABC是锐角三角形且三边满足BCACAB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_个,利用图把它画出来(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27如图,在ABC中,C=90,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:BPM=4528如图,在锐角ABC中,AD、CE分
9、别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE(1)求证:直线PQ是线段DE的垂直平分线;(2)如果ABC是钝角三角形,BAC90,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明新课标八年级数学竞赛培训第15讲:平行四边形参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PEBD,PFAC,E、F分别是垂足,那么PE+PF=考点:矩形的性质;等腰三角形的性质。368876 专题:几何图形问题。分析:首先过A作AGBD于
10、G根据等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,则PE+PF=AG利用勾股定理求得BD的长,再根据三角形的面积计算公式求得AG的长,即为PE+PF的长解答:解:如图,过A作AGBD于G,则SAOD=ODAG,SAOP+SPOD=AOPF+DOPE=DO(PE+PF),SAOD=SAOP+SPOD,PE+PF=AG,等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,PE+PF=AGAD=12,AB=5,BD=13,故答案为:点评:本题考查矩形的性质、等腰三角形的性质、三角形的面积计算解决本题的关键是明白等腰三角形底边上的任意一点到两腰距离的和等于腰上的高2(2003宁波)如图,B
11、D是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是BE=DF(填一个即可)考点:平行四边形的判定。368876 专题:开放型。分析:要使四边形AECF也是平行四边形,可增加一个条件:BE=DF解答:解:使四边形AECF也是平行四边形,则要证四边形的两组对边相等,或两组对边分别平行,如果BE=DF,则有:ADBC,ADF=CBE,AD=BC,BE=DF,ADFBCE,CE=AF,同理,ABECFD,CF=AE,四边形AECF是平行四边形故答案为:BE=DF点评:本题考查了平行四边形的判定,是开放题,答案不唯一,本题利用了平行四边形和性质,通过
12、证ADFBCE,ABECFD,得到CE=AF,CF=AE利用两组对边分别相等来判定平行四边形3如图,已知矩形ABCD中,对角线AC、BD相交于O,AEBD于E,若AB=6,AD=8,则AE=4.8考点:矩形的性质。368876 专题:计算题。分析:矩形各内角为直角,在直角ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长解答:解:矩形各内角为直角,ABD为直角三角形在直角ABD中,AB=6,AD=8则BD=10,ABD的面积S=ABAD=BDAE,AE=4.8故答案为 4.8点评:本题考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,本题中根据勾股定理求
13、BD的值是解题的关键4如图,以ABC的三边为边在BC的同一侧分别作三个等边三角形,即ABD、BCE、ACF(1)四边形ADEF是平行四边形;(2)当ABC满足条件AB=AC时,四边形ADEF为菱形;(3)当ABC满足条件AB=AC=BC时,四边形ADEF不存在考点:等边三角形的性质;平行四边形的判定;菱形的判定。368876 专题:证明题。分析:(1)先证明ABCDBE,ABCFEC,则DE=AC=AF,FE=AB=AD,则四边形ADEF是个平行四边形;(2)当AB=AC时,四边形ADEF为菱形;(3)当AB=AC=BC时,四边形ADEF不存在解答:解:(1)四边形ADEF是个平行四边形在AB
14、C和DBE中,BC=BE,BA=BD,DBE=ABC(与ABE之和都等于60),ABCDBE,DE=AC,在ABC和FEC中,BC=EC,CA=CF,ACB=FCE(都为60角与=ACE之和),ABCFEC,FE=AB,DE=AC=AF,FE=AB=AD,四边形ADEF是个平行四边形;(2)当ABC为等腰三角形并且不是等边三角形时,即AB=AC时,由第(1)题中可知四边形ADEF的四边都相等,此时四边形ADEF是菱形;(3)当ABC为等边三角形时,即AB=AC=BC时,四边形ADEF中的A点与E点重合,此时以A、D、E、F为顶点的四边形不存在点评:本题考查了平行四边形、菱形的判定以及等边三角形
15、的性质5已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为考点:勾股定理的逆定理;勾股定理。368876 专题:探究型。分析:先根据三角形的一边长为2,这边上的中线为1判断出此三角形是直角三角形,在设另两边分别为x、y两用完全平方公式可用x2+y2表示出xy的值,再由勾股定理即可求出x2+y2,进而可求出xy的值解答:解:三角形的一边长为2,这边上的中线为1,可知这边上的中线等于这条边的一半,此三角形是个直角三角形,斜边为2,设另两边分别为x、y,两边之和x+y=1+,(x+y)2=(1+)2=4+2,xy=2+,又直角三角形两直角边的平方等于斜边的平方,x2+y2
16、=4,xy=2+2=故答案为:点评:本题考查的是勾股定理的逆定理及勾股定理,根据已知条件判断出三角形的形状是解答此题的关键,解答此题时不要根据另两边之和为1+即可盲目的设一边为1,另一边为6如图所示,在平行四边形ABCD中,EFBC,GHAB,EF、GH的交点P在BD上,图中有5对四边形面积相等;它们是AEPG与PHCF、EFCB与ABHG、GHCD与EFDA、梯形ABPG与梯形BCFP、四边形PHCD与四边形AEPD考点:平行四边形的性质。368876 分析:由题意可证四边形EPHB为平行四边形,再根据平行四边形的对角线将平行四边形的面积平分,从而求解解答:解:EFBC,GHAB,四边形EP
17、BH为平行四边形,BP为平行四边形EPBH的对角线,EBP与BHP的面积相等,BD为平行四边形ABCD的对角线,ABD与BCD面积相等,PD为平行四边形PFDG的对角线,GPD与PFD面积相等,AEPG与PHCF面积相等;EFCB与ABHG面积相等;GHCD与EFDA面积相等、梯形ABPG与梯形BCFP、梯形PHCD与梯形AEPD共5对,故答案为:5,AEPG与PHCF、EFCB与ABHG、GHCD与EFDA、梯形ABPG与梯形BCFP、梯形PHCD与梯形AEPD点评:此题主要考查平行四边形的性质及其面积公式,比较简单7如图,菱形ABCD的对角线AC、BD相交于O,AOB的周长为3+,ABC=
18、60,则菱形ABCD的面积为考点:菱形的性质;勾股定理。368876 专题:计算题。分析:根据ABC=60可以求得ABO=30,即AB=2AO,设AO=x,则AB=2x,根据勾股定理即可求得OB=x,求得x的值即可求得AC,BD的长度,即可计算菱形ABCD的面积解答:解:菱形对角线即角平分线ABC=60可以求得ABO=30,即AB=2AO,设AO=x,则AB=2x,则OB=x,即(3+)x=3+即x=1,菱形的对角线长为2、2,故菱形ABCD的面积为S=22=2故答案为 2点评:本题考查了勾股定理在直角三角形中的运用,考查了菱形对角线互相垂直且平分一组对角的性质,本题中根据勾股定理求x的值是解
19、题的关键8如图,矩形ABCD中,AC、BD相交于点O,AE平分BAD,交BC于E,若EAO=15,则BOE的度数为75度考点:矩形的性质;等边三角形的判定与性质。368876 专题:计算题。分析:根据矩形的性质可得BOA为等边三角形,得出BA=BO,又因为BAE为等腰直角三角形,BA=BE,由此关系可求出BOE的度数解答:解:AE平分BAD,BAE=EAD=45,又知EAO=15,OAB=60,OA=OB,BOA为等边三角形,BA=BO,BAE=45,ABC=90,BAE为等腰直角三角形,BA=BEBE=BO,EBO=30,BOE=BEO,此时BOE=75故答案为75点评:此题综合考查了等边三
20、角形的判定、等腰三角形的性质、矩形的性质等知识点9如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D处,则重叠部分AFC的面积为10考点:勾股定理;全等三角形的判定与性质。368876 专题:计算题。分析:因为BC为AF边上的高,要求AFC的面积,求得AF即可,求证AFDCFB,得BF=DF,设DF=x,则在RtAFD中,根据勾股定理求x,AF=ABBF解答:解:易证AFDCFB,DF=BF,设DF=x,则AF=8x,在RtAFD中,(8x)2=x2+42,解之得:x=3,AF=ABFB=83=5,SAFC=AFBC=10故答案为 10点评:本题考查了勾股定理的正确运用,
21、本题中设DF=x,根据直角三角形AFD中运用勾股定理求x是解题的关键二、选择题(共9小题,每小题5分,满分45分)10如图,ABCD中,ABC=75,AFBC于F,AF交BD于E,若DE=2AB,则AED的大小是()A60B65C70D75考点:平行四边形的性质;等腰三角形的性质;直角三角形斜边上的中线。368876 专题:计算题。分析:由DE=2AB,可作辅助线:取DE中点O,连接AO,根据平行四边形的对边平行,易得ADE是直角三角形,由直角三角形斜边上的中线是斜边的一半,即可得ADO,AOE,AOB是等腰三角形,借助于方程求解即可解答:解:取DE中点O,连接AO,四边形ABCD是平行四边形
22、,ADBC,DAB=180ABC=105,AFBC,AFAD,DAE=90,OA=DE=OD=OE,DE=2AB,OA=AB,AOB=ABO,ADO=DAO,AED=EAO,AOB=ADO+DAO=2ADO,ABD=AOB=2ADO,ABD+ADO+DAB=180,ADO=25,AOB=50,AED+EAO+AOB=180,AED=65故选B点评:此题考查了直角三角形的性质(直角三角形斜边上的中线是斜边的一半)、平行四边形的性质(平行四边形的对边平行)以及等腰三角形的性质(等边对等角),解题的关键是注意方程思想的应用11如图,正AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,
23、则B的度数是()A70B75C80D95考点:菱形的性质;等腰三角形的性质;等边三角形的性质。368876 专题:计算题。分析:正AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180即可求得B的度数解答:解:正AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,设B=x,则BAD=180x,BAE=DAF=1802x,即1802x+1802x+60=180x解得x=80,故选 C点评:本题考查了正三角形各内角为60、各边长相等的性质,考查了菱形邻角之和为180的性质,本题中根据关于x的等量关系式求x的值是解题的关键12如图,正方形ABCD外有一点
24、P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A2BC3D考点:正方形的性质;勾股定理。368876 专题:计算题。分析:用EF,BE,AB分别表示AP,BP,用CF,PF,DC分别表示DP,CP,得AP2+CP2=DP2+BP2,已知AP,BP,CP代入上式即可求DP解答:解:延长AB,DC,过P分作PEAE,PFDF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,
25、代入AP,BP,CP得DP=2,故选 A点评:本题考查了勾股定理在直角三角形中的运用,考查了正方形各边相等的性质,本题中求证AP2+CP2=DP2+BP2是解题的关键13如图,在平行四边形ABCD中,BC=2AB,CEAB于E,F为AD的中点,若AEF=54,则B=()A54B60C66D72考点:菱形的判定与性质;平行四边形的性质。368876 专题:计算题。分析:过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即RtBCE斜边上的中点,由此可得BC=2EG=2FG,即GEF、BEG都是等腰三角形,因此求B的度数,只需求得BEG的度数即可;易知四边形ABGF是平行四边形
26、,得EFG=AEF,由此可求得FEG的度数,即可得到AEG的度数,根据邻补角的定义可得BEG的值,由此得解解答:解:过F作FGABCD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在RtBEC中,EG是斜边上的中线,则BG=GE=FG=BC;AEFG,EFG=AEF=FEG=54,AEG=AEF+FEG=108,B=BEG=180108=72故选D点评:此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键14四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+
27、b2+c2+d2=2ac+2bd,则这个四边形一定是()A两组角分别相等的四边形B平行四边形C对角线互相垂直的四边形D对角线相等的四边形考点:平行四边形的判定;非负数的性质:偶次方;完全平方公式。368876 专题:规律型。分析:对于所给等式a2+b2+c2+d2=2ac+2bd,先移项,故可配成两个完全式,即(ac)2+(bd)2=0,进而可得a=c,b=d,四边形中两组对边相等,故可判定是平行四边形解答:解:a2+b2+c2+d2=2ac+2bd可化简为(ac)2+(bd)2=0a=c,b=da,b,c,d分别为四边形ABCD的四边a=c,b=d即两组对边分别相等,则可确定其为平行四边形故
28、选B点评:此题主要考查平行四边形的判定问题,正确的对式子进行变形,熟练掌握平行四边形的判定定理是解题的关键15周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A98B196C280D284考点:一元一次方程的应用。368876 专题:几何图形问题。分析:此题要理解长方形ABCD的面积是不变的,用不同的方法表示即是此题的等量关系,也就是7个小长方形的面积和与大长方形的面积相等还要注意设小长方形的宽为x,则其长为346x,大长方形的宽为345x,长为5x,根据等量关系列方程即可解答:解:设小长方形的宽为x根据题意得:7x(346x)=5x(345x)化简得:
29、7(346x)=5(345x)解得:x=4则大长方形的面积为5x(345x)=280故选C点评:此题锻炼了学生的识图能力,关键是分清7个小长方形是如何组合成大长方形的,还要注意设小的比较简单16(2003吉林)如图,菱形花坛ABCD的边长为6m,A=120,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A12mB20mC22mD24m考点:菱形的性质;等边三角形的性质。368876 专题:应用题。分析:连接AC,根据已知可得到ABC为正三角形,从而可求得正六边形的边长是ABC边长的,已知种花部分图形共有10条边则其周长不难求得解答:解:连接AC,已知A=120,ABCD为菱形
30、,则B=60,从而得出ABC为正三角形,以ABC的顶点所在的小三角形也是正三角形,所以正六边形的边长是ABC边长的,则种花部分图形共有10条边,所以它的周长为610=20m,故选B点评:此题主要考查了菱形的性质,等边三角形的性质的运用17在凸四边形ABCD中,ABCD,且AB+BC=CD+DA,则()AADBCBADBCCAD=BCDAD与BC的大小关系不能确定考点:平行四边形的判定与性质。368876 分析:根据条件AB+BC=CD+DA,可以延长AB至E使BE=BC,延长CD至F使DF=DA,连接CE,AF,这样的辅助线,然后根据平行四边形的判定定理得出四边形AECF为平行四边形,再利用三
31、角形全等可以得出AD与BC的大小关系解答:解:延长AB至E使BE=BC,延长CD至F使DF=DA,连接CE,AF,AB+BC=CD+DA,AE=CF,又AECF,四边形AECF为平行四边形,E=F,CE=AF,又BE=BC,DF=AD,E=BCE=F=DAF,CE=AF,AFDBEC,AD=BC,故选C点评:此题主要考查了平行四边形的性质与判定,延长AB至E使BE=BC,延长CD至F使DF=DA,这种辅助线的作法是由条件AB+BC=CD+DA所决定的,同学们做今后做题过程中,应该学会应用18已知四边形ABCD,从下列条件中:(1)ABCD;(2)BCAD;(3)AB=CD;(4)BC=AD;(
32、5)A=C;(6)B=D任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A4种B9种C13种D15种考点:平行四边形的判定。368876 分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形根据平行四边形的判定,任取两个进行推理解答:解:根据平行四边形的判定,符合四边形ABCD是平行四边形条件的有九种:(1)(2);(3)(4);(5)(6);(1)(3);(2)(4)
33、;(1)(5);(1)(6);(2)(5);(2)(6)共九种故选B点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法三、解答题(共11小题,满分0分)19如图,在ADC中,BAC=90,ADBC,BE、AF分别是ABC、DAC的平分线,BE和AD交于G,求证:GFAC考点:平行四边形的判定与性质;三角形的外角性质;全等三角形的判定与性质。368876 专题:证明题。分析:从角的角度证明困难,连接EF,在四边形AGFE的背景下思考问题,证明四边形AGFE为特殊平行四边形,证题的关键是能分解出直角三角形中的基本图形解答:证明:连接EFBA
34、C=90,ADBCC+ABC=90,C+DAC=90,ABC+BAD=90ABC=DAC,BAD=CBE、AF分别是ABC、DAC的平分线ABG=EBDAGE=GAB+GBA,AEG=C+EBD,AGE=AEG,AG=AE,AF是DAC的平分线,AOBE,GO=EO,ABOFBO,AO=FO,四边形AGFE是平行四边形,GFAE,即GFAC点评:此题主要考查平行四边形的判定与性质,三角形的外角性质和全等三角形的判定与性质的综合运用20设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:B
35、CBD,且BC=BD考点:等腰直角三角形;全等三角形的判定与性质。368876 专题:证明题。分析:此题关键是证PBCPDB,已有PC=PD,PB是公共边,只需再证明BPD=CPB,而BPD=APG,则证明APG=CPB,进而需要证明1=2,可利用同角的余角相等证明解答:解:PEAC于E,PFBC于F,ACB=90,CEPF是矩形(三角都是直角的四边形是矩形),OP=OF,PEF+3=90,1=3,PGEF,PEF+2=90,2=3,1=2,ABC是等腰直角三角形,A=ABC=45,APE=BPF=45,APE+2=BPF+1,即APG=CPB,BPD=APG,BPD=CPB,又PC=PD,P
36、B是公共边,PBCPBD(SAS),BC=BD,PBC=PBD=45,PBC+PBD=90,即BCBD故证得:BCBD,且BC=BD点评:本题主要考查三角形全等的判定和性质,综合利用了等腰直角三角形的性质,和矩形的判定和性质等知识点,难度较大21如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE如果AD=BC=CE=DE,求BAC的度数考点:等腰三角形的性质;三角形内角和定理;全等三角形的判定与性质;平行四边形的判定与性质。368876 专题:综合题。分析:过D作DFBC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,根据平行四边形的性质可得到BD
37、=CF,DAFC,再利用SAS判定ADE=CEF,根据全等三角形的性质可得到ED=EF,从而可推出DEF为等边三角形,BAC=x,则ADF=ABC=,根据三角形内角和定理可分别表示出ADE,ADF,根据等边三角形的性质不难求得BAC的度数解答:解:过D作DFBC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,BD=CF,DAFC,EAD=ECF,AD=CE,AE=BD=CF,ADECEF(SAS)ED=EF,ED=BC,BC=DF,ED=EF=DFDEF为等边三角形设BAC=x,则ADF=ABC=,DAE=180x,ADE=1802DAE=1802(180x)=2x180,ADF
38、+ADE=EDF=60+(2x180)=60x=100BAC=100点评:此题主要考查等腰三角形的性质,三角形内角和定理,平行四边形的判定与性质及全等三角形的判定与性质的综合运用22如图,ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边ADE(1)求证:ACDCBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且DEF=30考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质。368876 专题:证明题。分析:(1)在ACD和CBF中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等(2)当DEF=30,即为DCF=30,在BC
39、F中,CFB=90,即F为AB的中点,又因为ACDCBF,所以点D为BC的中点解答:证明:(1)由ABC为等边三角形,AC=BC,FBC=DCA,CD=BF,所以ACDCBF(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图,连接BE,在AEB和ADC中,AB=AC,EAB+BAD=DAC+BAD=60,即EAB=DAC,AE=AD,AEBADC(SAS),又ACDCBF,AEBADCCFB,EB=FB,EBA=ABC=60,EFB为正三角形,EF=FB=CD,EFB=60,又ABC=60,EFB=ABC=60,EFBC,而CD在BC上,EF平行且相等于CD,四边形CDEF为平行四边形,D在线段BC上的中点,F在线段AB上的中点,FCD=60=30则DEF=FCD=30点评:本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件23(2002河南)如图所示,在RtABC中,AB=AC,A=90,点D为BC上任一点,DFAB于F,DEAC于E,M为BC的中点,试判断MEF是什么形状的三角形,并证明你的结论考点:等腰三角形的判定。368876 专题:
限制150内