高中数学优质课件精选——人教版选修1-1:第1章 常用逻辑用语1.2.1 .pptx
《高中数学优质课件精选——人教版选修1-1:第1章 常用逻辑用语1.2.1 .pptx》由会员分享,可在线阅读,更多相关《高中数学优质课件精选——人教版选修1-1:第1章 常用逻辑用语1.2.1 .pptx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2.1充分条件与必要条件,第一章 1.2 充分条件与必要条件,1.理解充分条件、必要条件的意义. 2.会求(判定)某些简单命题的条件关系. 3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作pq,并且说p是q的 ,q是p的 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法不同.p是q的充分条件只反映了pq,与q
2、能否推出p没有任何关系. (2)注意以下等价的表述形式:pq;p是q的充分条件;q的充分条件是p;q是p的必要条件;p的必要条件是q. (3)“若p,则q”为假命题时,记作“pq”,则p不是q的充分条件,q不是p的必要条件.,答案,充分条件,必要条件,答案,返回,思考(1)数学中的判定定理给出了结论成立的什么条件? 答案充分条件. (2)性质定理给出了结论成立的什么条件? 答案必要条件.,题型探究 重点突破,解析答案,题型一充分条件、必要条件 例1给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解两个三角形相似两个三角形全等, 但两个三角形全等两个三角形相似, p是q的必要
3、不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解矩形的对角线相等,pq, 而对角线相等的四边形不一定是矩形,qp. p是q的充分不必要条件.,解析答案,反思与感悟,(3)p:AB,q:ABA; 解pq,且qp, p既是q的充分条件, 又是q的必要条件. (4)p:ab,q:acbc. 试分别指出p是q的什么条件. 解pq,且qp, p是q的既不充分也不必要条件.,反思与感悟,本例分别体现了定义法、集合法、等价法.一般地,定义法主要用于较简单的命题判断,集合法一般需对命题进行化简,等价法主要用于否定性命题.要判断p是不是q的充分条件,就要看p能否推出q,要判断p是不是q的必
4、要条件,就要看q能否推出p.,解析答案,跟踪训练1指出下列哪些命题中p是q的充分条件? (1)在ABC中,p:AB,q:BC AC. 解在ABC中,由大角对大边知,ABBCAC, 所以p是q的充分条件. (2)对于实数x,y,p:xy8,q:x2或y6. 解对于实数x,y, 因为x2且y6xy8, 所以由xy8x2或x6, 故p是q的充分条件.,解析答案,(3)在ABC中,p:sin Asin B,q:tan Atan B. 解在ABC中,取A120,B30, 则sin Asin B,但tan Atan B, 故pq,故p不是q的充分条件. (4)已知x,yR,p:x1,q:(x1)(x2)0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学优质课件精选人教版选修1-1:第1章 常用逻辑用语1.2.1 高中数学 优质 课件 精选 人教版 选修 常用 逻辑 用语 1.2
限制150内