勾股定理全章知识点总结大全A(13页).doc
《勾股定理全章知识点总结大全A(13页).doc》由会员分享,可在线阅读,更多相关《勾股定理全章知识点总结大全A(13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-勾股定理全章知识点总结大全A-第 13 页勾股定理全章知识点总结大全一基础知识点:1:勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在中,则,)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2c2,那么这个三角形是直角三角形。要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“
2、数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2a2+b2,则ABC是以C为直角的直角三角形(若c2a2+b2,则ABC是以C为钝角的钝角三角形;若c2a2+b2,则ABC为锐角三角形)。(定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。4:互逆命题的概念如
3、果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为大正方形面积为 所以方法三:,化简得证6:勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一
4、组勾股数记住常见的勾股数可以提高解题速度,如;等用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)二、规律方法指导1勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。2勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。3勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2c2,那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的
5、过程主要是进行代数运算,通过学习加深对“数形结合”的理解我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)勾股定理典型例题及专项训练专题一:直接考查勾股定理及逆定理例.在中,已知,求的长 已知,求的长分析: 练习:1、如图所示,在四边形ABCD中,BAD=,DBC=,AD=3,AB=4,BC=12,求CD。2已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。3、已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。例2:已知直角三角形的两边长分别为5和12,求第三边。练习
6、:在ABC中,AB=13,AC=15,高AD=12,则BC的长为多少?例3:(1).已知ABC的三边、满足,则ABC为 三角形(2).在ABC中,若=(+)(-),则ABC是 三角形,且 练习:1、已知 与互为相反数,试判断以、为三边的三角形的形状。2、.若ABC的三边、满足条件,试判断ABC的形状。3.已知则以、为边的三角形是 例4:已知如图,在ABC中,C=60,AB=,AC=4,AD是BC边上的高,求BC的长。如图,在RtABC中,ACB=90,CDAB于D,设AB=c,AC=b,BC=a,CD=h。求证:(1)(2)(3)以为三边的三角形是直角三角形练习1.如图,ABC中,AB=AC,
7、A=45,AC的垂直平分线分别交AB、AC于D、E,若CD=1,则BD等于( )A1 B C D2.已知一直角三角形的斜边长是2,周长是2+,求这个三角形的面积3.ABC中,D是AB的中点,若AC=12,BC=5,CD=65 求证:ABC是直角三角形4.如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=BC,猜想AF与EF的位置关系,并说明理由5.如图,,分别以各边为直径作半圆,求阴影部分面积6.如图2-10,ABC中,AB=AC=20,BC=32,D是BC上一点,且ADAC,求BD的长7.如图2-9,ABC中,ACB=90,AC=BC,P是ABC内一点,满足PA=3,PB=1
8、,PC=2,求BPC的度数8.已知ABC中,ACB=90,AC=3,BC=4,(1)AD平分BAC,交BC于D点。求CD长(2)BE平分ABC,交AC于E,求CE长9.如图,在四边形ABCD中,A600,BD900,BC2,CD3,求AB的长10.如图,P为ABC边BC上一点,PC2PB,已知ABC450,APC600,求ACB的度数。11、已知ABC中,BAC750,C600,BC,求AB、AC的长。12、如图,ABC中,AD是高,CE是中线,DCBE,DGCE于G。 (1)求证:G是CE的中点; (2)B2BCE。 (3)若AC=6,AB=8,求DG的长。专题二 勾股定理的证明1、利用四个
9、全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图从图中可以看到:大正方形面积小正方形面积四个直角三角形面积因而c2 化简后即为c2 abc2、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为 abcl3、2002年8月2028日在北京召开了第24届国际数学家大会大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是 4、如图,直线上有三个正方形,若的面积分别为5和11,则的面积为()()4()6()16()55aAADAABCbc第4题
10、图5、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面倒下到的位置,连结,设,请利用四边形的面积证明勾股定理:.6、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EF都是正方形. 证:ABFDAE7、(2010年辽宁省丹东市)图是一个边长为的正方形,小颖将图图第7题图图中的阴影部分拼成图的形状,由图和图能验证的式子是( )A B C D专题三 网格中的勾股定理1、如图1,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( ) (A)CD、EF、GH (B)A
11、B、EF、GH (C)AB、CD、GH (D)AB、CD、EF2、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A 0 B 1 C 2 D 33、(2010年四川省眉山市)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90 B60 C45 D304、如图,小正方形边长为1,连接小正方形的三个得到,可得ABC,则边AC上的高为( )A. B. C. D. 5、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点称为格点,请以图中的格点为顶点画一个边长为3、的三角形所画的三角形是直角三角形吗?说明理由6、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 知识点 总结 大全 13
限制150内